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We demonstrate the existence of a nonequilibrium “Floquet Fermi liquid” state arising in partially filled
Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of “Floquet Fermi
surfaces” enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these
states, including their quantum oscillations under magnetic fields which feature slow beating patterns of
their amplitude reflecting the different areas of the Floquet Fermi surfaces, consistent with those observed
in microwave induced resistance oscillation experiments. We also investigate their specific heat and
thermodynamic density of states and demonstrate how by controlling properties of the drive, such as its
frequency, one can tune some of the Floquet Fermi surfaces toward nonequilibrium Van Hove singularities
without changing the electron density.
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Introduction.—Characterizing the landscape of nonequi-
librium quantum states of matter is a major open frontier in
the study of quantum many-body systems. Recent years
have seen substantial progress in our understanding and
experimental control of periodically driven quantum sys-
tems also known as Floquet systems. In particular, the
flexibility afforded by tuning the properties of the drive has
led to a variety of interesting proposals to realize nontrivial
Floquet topological band structures [1–4]. However, a
crucial point that has been emphasized in several pioneering
works [5–14] is that Floquet topological bands should not
be occupied according to naive equilibrium distributions,
such as the Fermi-Dirac distribution, and this is at the heart
of their markedly different physical behavior relative to their
equilibrium counterparts. Despite all these important efforts
in understanding the occupation of Floquet topological
insulators, much less attention has been devoted to elucidat-
ing the ultimate nature of the analog of the metallic state for
Floquet systems.
Our study tries to precisely fill in this gap by system-

atically investigating the fate of Fermi liquids and their
Fermi surfaces when they are driven far away from
equilibrium by periodic time-dependent perturbations. To
address this wewill revisit the more general question of how
should Floquet states be occupied by fermions? To answer
this question it is important to consider a system in contact
with a bath, because periodically driven closed systems that
are thermalizing tend to have trivial infinite temperature
steady states [15–17], and those that are not thermalizing
tend to retain memory of initial conditions [16,18–22],
making their steady states not unique. In contrast to a closed
system, the coupling to the bath allows the system to release
the energy that it gains from the work performed by the

periodic drive every cycle, enabling it to reach a nontrivial
steady state at late times. We will consider an “all fermion”
setting, where the system and the bath are both comprised
only of fermions.
Within such a setting, we have a found a remarkable

answer to this question: a nonequilibrium steady state with
a sizable energy density difference relative to the ground
state but which retains its quantum nature, which we call
the Floquet Fermi liquid. Unlike its equilibrium counter-
part where states are occupied according to the Fermi
Dirac distribution, the Floquet Fermi liquid features a
staircase-shaped occupation of the Floquet band with
multiple jumps that evolve into sharp discontinuities at
zero temperature giving rise to a collection of enclosed
Floquet Fermi surfaces (see Fig. 1). We will investigate the
fingerprints left by Floquet Fermi surfaces in various
observables, such as the appearance of a slow beating
of the quantum oscillations amplitude, as well as the
density of states and the specific heat.
Fermi Dirac staircase periodic Gibbs ensemble.—

Consider a model of noninteracting fermions in contact
with a fermionic bath, with a single particle Hamiltonian of
the system plus bath of the form

HðtÞ ¼
�
HSðtÞ HSB

HBS HB

�
: ð1Þ

The system can be viewed as a tight-binding model, where
each site can tunnel (via HSB) to a collection of bath sites
that are a set of independent energy levels (described by
HB). This is a “grand-canonical” setting where the energy
and particle number of the system can fluctuate.
We assume the bath to be “featureless,” namely with
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energy-independent density of states and tunneling ampli-
tudes over a bandwidth that is much larger than the
system’s, as it is frequently assumed [13,23–32].
Crucially, the system Hamiltonian HSðtÞ, can be time

dependent, allowing us to drive it away from thermal
equilibrium with the bath. By assuming that the bath is
prepared in a thermal ensemble in a distant past with a
Fermi Dirac distribution, f0ðϵÞ ¼ 1=½1þ eβðϵ−μÞ� with
inverse temperature β ¼ 1=kBT0 and chemical potential
μ, one can rigorously show [33] that at late times the system
approaches a unique steady state, with its exact one-body
density-matrix given by

ρSðtÞ ¼ Γ
Z þ∞

−∞

dϵ
π
f0ðϵÞUΓðt; ϵÞU†

Γðt; ϵÞ;

UΓðt; ϵÞ ¼
Z

t

−∞
dt0eΓðt0−tÞ−iϵt0USðt; t0Þ; ð2Þ

where USðt; t0Þ satisfying i∂tUSðt; t0Þ ¼ HSðtÞUSðt; t0Þ is
the unitary evolution operator of the isolated system and
Γ ¼ λ2ν0=2 is the particle tunneling rate into the bath,
which parametrizes the strength of system-bath coupling.
Equation (2) generalizes Eq. (41) of Ref. [13] to arbitrary
off-diagonal time-dependent system Hamiltonians. Now by
assuming that the drive is periodic, HðtÞ ¼ Hðtþ TÞ, and
the coupling to the bath is infinitesimal, Γ → 0, so that it
would act as an “ideal” bath in equilibrium, then Eq. (2)
reduces to [33]:

lim
Γ→0

ρSðtÞ ¼
X
a

fajψF
a ðtÞihψF

a ðtÞj;

fa ¼
Xþ∞

l¼−∞
jφa;lj2f0ðϵFa þ lΩÞ: ð3Þ

Here, jψF
a ðtÞi are the complete basis of solutions of the

single particle time dependent Schrödinger equation, ϵFa are
their Floquet energies,Ω ¼ 2π=T, jφa;lj2 ≡ hφa;ljφa;li with
jφa;li the lth harmonic of the Floquet wave function, related
as jψF

a ðtÞi ¼
P

l e
−iϵFa t−ilΩtjφa;li [39]. Notice that while

there is a “gauge” freedom to redefine the Floquet energy
and wave function as ϵ0Fa ¼ ϵFa þ l0Ω, jφ0

a;li ¼ jφa;lþl0i for
any chosen integer l0, which leaves the physical single-
particle time-dependent wave-function invariant, the occu-
pation of each physical time-dependent state obtained from
Eq. (3) is invariant under such redefinition and thus
unambiguously defined.
Equation (3) is an example of a periodic Gibbs ensemble

[16,18–20], but in contrast to the setting of Refs. [16,18–20]
we have obtained this ensemble by coupling the system to a
bath and not as a result of many-body self-thermalization. In
the context of self-thermalization the occupations fa would
not be fixed but determined by initial conditions of the
quasiparticles, but in our context the fa are uniquely fixed
by the state of the bath. Notably, the occupations fa viewed
as a function of the Floquet energy ϵFa are not given by the
equilibrium Fermi-Dirac function but instead by a Fermi-
Dirac staircase (see Fig. 1), generalizing the results of
Ref. [13] to off-diagonal Hamiltonians. These staircase
occupations have also appeared in Eq. (12) of Ref. [5]
and Eq. (1) of Ref. [14], and in discussions of the Tien-
Gordon effect [40,41] in driven mesoscopic systems.
The Floquet Fermi liquid.—Let us now specialize to the

case of a Floquet Bloch band. For simplicity, we take a
system with a single band arising from a tight-biding model
with one site per unit cell with dispersion ϵðkÞ, and driven
by a time-periodic and spatially uniform electric field with
vector potential AðtÞ ¼ Aðtþ TÞ so that the Hamiltonian
remains diagonal in crystal momentum and is given by
ϵkðtÞ≡ ϵ(k −AðtÞ). In this case, the density matrix is
indeed time-independent and the occupations can be
obtained from Eq. (3) by replacing a → k:

fk ¼
X
l

jφk;lj2f0(ϵFk þ lΩ); ð4Þ

where the Floquet energy and the harmonics of the Flo-
quet wave functions are given by ϵFk ¼ hϵkðtÞiT, φk;l ¼
he−i

R
t

0
dt0½ϵkðt0Þ−ϵFk−lΩ�iT , and h� � �iT ¼ R

T
0 ð� � �Þdt=T de-

notes the time average over one period. Notice that here
we are choosing an extended zone scheme where the Flo-
quet energy is not restricted to an interval of size Ω,
but instead fixing the ambiguity of the Floquet energy
ϵFk, so that it approaches time-independent band dis-
persion ϵk in the limit of vanishing driving electric field
amplitude while fixing the frequency, and correspondingly,
fk → f0ðϵkÞ with jφk;lj2 → δl;0. fk in Eq. (4) describes the
occupation of canonical crystal momentum k, which is
related to the physical gauge invariant crystal momentum via

(a) (b)

FIG. 1. (a) Fermi Dirac Staircase occupation of Floquet states,
from Eq. (3); (b) associated Floquet Fermi surfaces from Eq. (5).
We are choosing an extended zone scheme for the Floquet energy,
ϵFk (blue line), so that it approaches the undriven band energy in
the limit of vanishing amplitude of the drive at fixed frequency Ω.
Therefore, the Floquet Fermi surface for ϵFk ¼ μ (dotted blue line)
approaches the undriven Fermi surface, while additional Floquet
Fermi surfaces appear for ϵFk ¼ μ − Ω (red dotted) and ϵFk ¼
μþ Ω (green dotted) [see Eq. (5)].
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kphys ¼ k −AðtÞ. Since the occupation of canonical
momenta is time independent, the occupation of physical
momenta oscillates as AðtÞ. Therefore, the occupation
develops a collection of sharp steps at several surfaces in
crystal momentum that are enclosed inside each other and
are given by (see Fig. 1)

ϵFk ¼ μ − lΩ; l∈Z: ð5Þ
We will refer to these surfaces as the Floquet Fermi surfaces
(FFS) and the corresponding nonequilibrium steady state as
the Floquet Fermi liquid (FFL). Notice that the height of the
jump at the lth FFS, given by jφk;lj2, is in general a function
of the momentum within a given FFS (see Fig. 1).
Quantum oscillations of the FFL.—As we have seen, a

periodically driven system of fermions in contact with a
fermionic bath approaches a nontrivial FFL steady state with
a collection of enclosed FFS’s. We would like to investigate
how these FFS’s manifest directly through observable
properties. We note that a few previous studies have indeed
indirectly dealt with the FFL through its manifestation in
properties such as Ruderman-Kittel-Kasuya-Yosida inter-
actions [42], susceptibility functions [43], and similar stair-
case occupations have also been discussed in driven
Luttinger liquids [44–46].
Systems with a Fermi surface display characteristic

quantum oscillations of many observables in the presence
of applied magnetic fields, with a periodicity of the form
∼ cosðS=BÞ, where S is the area of the Fermi surface. As we
will show, the FFSs give rise to a sum of quantum
oscillations with different frequencies ∼ cosðSl=BÞ, where
Sl is the area of the lth FFS. We will show that in the regime
where the cyclotron energy is smaller than the driving
frequency this will lead to a slow beating of the amplitude
of quantum oscillations, which, remarkably, has the same
period measured in two-dimensional electron systems in the
regime where microwave induced resistance oscillations
(MIRO) coexist with the Shubnikov–de Haas (SdH) oscil-
lations [47,48], suggesting that the Floquet Fermi liquid has
indeed already been achieved in these experiments.

To illustrate this, we consider parabolic fermions, coupled
simultaneously to a uniform magnetic field, B ¼ ∇×
A0ðrÞ, and a time-dependent electric field, EðtÞ ¼
−∂tAðtÞ ¼ Ee−iΩt þ c:c:, with Hamiltonian: HSðtÞ ¼
½k −A0ðrÞ −AðtÞ�2=ð2mÞ. The solutions of the time de-
pendent Schrödinger equation for this Hamiltonian are time-
dependent Landau levels wave functions, jψF

NðtÞi, with
Floquet energy ϵFN and labeled by a principal cyclotron
index N ¼ 0; 1; 2…, and with a guiding-center degeneracy
Nϕ [33]. By replacing a → N in the formula for the steady
state from Eq. (3), we can compute various observables of
the system. Here, we will focus on the oscillations of an
effective Floquet free energy defined as follows:

βG≡ −Nϕ

X
N;l

jφN;lj2 log
h
1þ e−βðϵFNþlΩ−μÞ

i
: ð6Þ

This free energy approaches the equilibrium free energy in
the limit of static Hamiltonians [AðtÞ → 0]: βGeff →
− lnZðβ; μÞ, where Zðβ; μÞ is the Grand-canonical partition
function in the absence of drive. Conceptually, the effective
Floquet free energy in Eq. (6), can be viewed as a sum of the
effective free energies of each Floquet quasienergy state,
ϵFN þ lΩ, weighed by the amplitude of the corresponding
harmonic of the Floquet wave function jφN;lj2, and thus it is
a mathematically natural extension of the relevant equilib-
rium free energy in a grand-canonical ensemble to a Floquet
system. We have utilized this free energy for conceptual
illustration in the main text because it displays much simpler
oscillations than other conceptually more natural quantities
such as the energy averaged over one period. Nevertheless,
the theory of the oscillations of such time averaged energy
are presented in Supplemental Material [33] (see also
Refs. [13,32,34–38] therein). In the absence of magnetic
fields, and to second order in driving electric fields, only the
Floquet bands shifted in energy by �ℏΩ contribute. In a
magnetic field to second order in electric fields, we would
have two Floquet copies of the Landau level spectrum (see
Fig. 2), since higher Floquet harmonics have weights with
higher powers of electric field [33]. We will thus compute
this free energy to second order in the electric fields. By
performing a similar analysis to the equilibrium calculation
[49], we have found the oscillating part of the Floquet free
energy in the limit where many Landau levels are occupied
μ ≫ ℏωc is [33]

δG
Nϕℏωc

≈
X

l¼�1;0

X∞
k¼1

GkRk

�
δl;0 þ

blμl
ℏωc

�
cos

�
kSl
B

�
; ð7Þ

where Gk ¼ ð−1Þk=ð2k2π2Þ, Rk ¼ λk= sinhðλkÞ is the
Lifshitz-Kosevich factor, λ ¼ 2π2=ðβℏωcÞ, Sl ≈ 2mπðμ −
lΩÞ is the area of lth FFS, b�1 ¼ −b0=2 ¼ Rþ ¼ jzþj2=
ðωc − ΩÞ2 þ jz−j2=ðωc þΩÞ2, and jz�j2 ¼ ωcðjEj2�
i½E × E��zÞ=ð2mΩ2Þ. We therefore see that the FFSs give

FIG. 2. Illustration of Floquet Landau levels (top right) and free
energy oscillations computed from Eq. (7), for T0 ¼ 0.05μ,
Ω ¼ 0.2μ, E=ðΩ ffiffiffiffiffiffiffi

mμ
p Þ ¼ 0.05 · nE=knEk, nE ¼ ð1; i=2Þ.
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rise to additional frequencies of the quantum oscillations
controlled by their effective areas, resembling a multiband
system in equilibrium, as illustrated in Fig. 2.
The above oscillations resemble closely those observed

in two-dimensional electron systems in the regime where
MIRO and SdH oscillations coexist [47], where a rich
variety of nonequilibrium phenomena have been observed
[50–54], that also have been realized for electrons in the
surface of helium [55] and more recently in graphene [56].
To make a more direct connection with these, let us
compute also the oscillations of an effective nonequilibrium
thermodynamic density of states (DOS), defined as

ν≡
�
∂n
∂μ

�
T0

; n ¼ 1

2πl2B

X
N

fN; ð8Þ

where l2B ¼ ℏc=eB denotes the magnetic length, and μ, T0

are the chemical potential and temperature of the bath. This
nonequilibrium DOS reduces to the equilibrium DOS in the
absence of drive, and the oscillations of DOS tend to
resemble those of resistivity in equilibrium [49,57], making
them a more relevant observable to contrast with MIRO
photoconductivity measurements. The oscillatory part of
the DOS [33], can be shown to be

δν ≈
2

hωcl2B

X∞
k¼1

ð−1ÞkRkFE cos

�
k
S0
B

�
; ð9Þ

where S0 ≈ 2mπμ is the area of the FS in equilibrium and
the factor FE ¼ 1–4Rþðμ=ℏωcÞsin2ðπΩ=ωcÞ describes the
oscillations of the envelope of the fast oscillations (see
Fig. 2), imprinted by the ac drive. The frequency and phase
of these envelope oscillations agrees exactly with that of
photoresistivity theories from Refs. [53,54], which agrees
with the point of view that these are dominated by density
of states oscillations. The frequency of oscillations of the
envelope also agrees with those of the photoresistivity in
MIRO experiments but not with their phase [47], for which
there is no current detailed understanding, although it is
expected to depend on the intensity of radiation [54], and
on details of the scattering mechanisms [53]. Therefore, the
FFL and its collection of FFSs, provide a simple over-
arching conceptual framework that positions MIRO as a
natural nonequilibrium counterpart to conventional equi-
librium quantum oscillations. We hope this picture can
contribute to clarify and guide experiments in the future.
Our fermionic bath is by no means a realistic approxima-
tion to the relevant relaxation mechanisms in typical
2DEGs where MIRO is observed. While some properties
of the quantum oscillations of FFLs, such as the frequency
of the slow beating of their amplitude, are expected to be
robust to the details of relaxations, other properties might
depend on the nature of the bath and relaxation mecha-
nisms. This is an avenue we hope to further investigate
more in future studies.

DOS and nonequilibrium Van Hove singularities of the
FFL.—The thermodynamic DOS plays a central role in
equilibrium and is directly measurable via capacitive
measurements of compressibility [58–63]. Notably, a non-
interacting system with its chemical potential tuned at a Van
Hove singularity, for which the DOS diverges, would
generically become unstable toward broken symmetry states
for weak interactions (see, e.g., Ref. [64]). Here, we would
like to demonstrate that FFLs possess a greater degree of
tunability relative to their equilibrium counterparts, because
the parameters controlling the radiation, such as the fre-
quency, can be used to tune it toward a Van Hove singularity
of its nonequilibrium DOS, without the need to change the
electron density. To demonstrate this we consider a single
band model. Using Eq. (4), the nonequilibrium DOS can be
expressed as a sum of an effective DOS of each FFS:

νðμÞ ¼ lim
T0→0

ð∂n=∂μÞT0
¼

X
l

νlðμÞ;

νlðμÞ ¼
Z

ddk
ð2πÞd jφk;lj2δðμ − lΩ − ϵFkÞ: ð10Þ

Therefore, the frequency can be used to shift the effective
chemical potential of lth FFS as μ − lΩ. As an example,
consider a 2D square lattice with nearest neighbor hopping
amplitude t, so that in equilibrium it would have dispersion
ϵk ¼ −2t cosðkxÞ − 2t cosðkyÞ, with a Van Hove singularity
at μ ¼ 0 originating from the states near the two special
momenta ðπ; 0Þ; ð0; πÞ [see Fig. 3(a)]. In the driven case,
AðtÞ ¼ ½Ax sinðΩtþϕxÞ;Ay sinðΩtþϕyÞ�, the Floquet band
energy is [33]:

ϵFk ¼ −2t½cosðkxÞJ0ðAxÞ þ cosðkyÞJ0ðAyÞ�; ð11Þ

where J0 is the Bessel function of first kind. This Floquet
problem retains a k → −k symmetry which pins the origin
of Van Hove singularities of the higher order FFSs to the
same two special momenta ðπ; 0Þ; ð0; πÞ. This symmetry
also leads to a vanishing of the odd Floquet wave functions
at these momenta, namely φð0;πÞ;l ¼ φðπ;0Þ;l ¼ 0 for odd l
[33]. However, for l even, the Floquet amplitudes remain
finite near these points and as a result such FFSs display
additional Van Hove singularities in the nonequilibrium
DOS, at the following chemical potentials [see Fig. 3(a)]:

μ ¼ lΩ� ½J0ðAxÞ − J0ðAyÞ�; l even: ð12Þ

This model illustrates the tantalizing potential of engi-
neering the properties of the ac drive to tune some FFSs
into Van Hove singularities, even if at equilibrium there is
no DOS singularity at the chemical potential.
Nonequilibrium specific heat of the FFL.—In equilib-

rium, the low temperature specific heat CV in a Landau-
Fermi liquid is related to the thermodynamic DOS via [65]:
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lim
T0→0

CV
π2

3
kBT0

¼ ð1þ Fs
0Þ limT0→0

�
∂n
∂μ

�
T0

; ð13Þ

where CV is the specific heat at constant volume, and Fs
0 is

the spin symmetric Landau parameter, which is nonzero only
in the presence of interactions. Therefore for noninteracting
fermions, the linear in T0 coefficient of the specific heat also
measures the DOS. However, interestingly, the FFLs violate
the above relation between specific heat and thermodynamic
DOS even for noninteracting fermions. To show this, we
begin by defining the nonequilibrium the specific heat, CV ,
as CV ≡ ð∂Ē=∂T0Þn, where Ē is the system energy time-
averaged over one period, and the derivative is computed at
fixed particle density. For our model with single Floquet
band, we obtain the following relation [33]:

lim
T0→0

CV
π2

3
kBT0

¼ lim
T0→0

�
∂n
∂μ

�
T0

þ ΔðμÞ; ð14Þ

where ΔðμÞ ¼ Ω
P

l1l2ðl2 − l1Þνl1ðμÞν0l2ðμÞ=½
P

l νlðμÞ�.
The additional Van Hove singularities in the nonequilibrium
DOS also manifest themselves as singularities in the non-
equilibrium specific heat as illustrated in Figs. 3(a) and 3(b)
for the same square lattice tight-binding model of the
previous section.
Discussion.—We have demonstrated the existence of a

nonequilibrium FFL steady state in Floquet bands that
features a collection of FFSs enclosed inside each other.
To realize these states in experiments essentially two
criteria should be met: first the driving frequency should
exceed thermal broadening ℏΩ ≫ kBT0 [66], so that the
multiple Floquet quasienergy bands can be resolved. In
addition, the size of the additional jumps of the Fermi
Dirac staircase occupation, which are the dimensionless
numbers jφa;lj2 in Eq. (3), should be sizable. The first
nontrivial jump scales as jφl¼�1j2 ∼ ðevFjEj=ℏΩ2Þ2, at
small field amplitudes, therefore the second criterion is

that the light intensity, I ¼ cϵ0jEj2=2, is comparable to
the intensity scale I0 ¼ ℏΩ4=ð8παv2FÞ, with α ≈ 1=137
the fine structure constant. We believe that these criteria
can be comfortably met in a variety of platforms, and, in
fact, are likely met in several of those in which MIRO
and SdH oscillations are seen to coexist [47,48]. For
example, for MIRO experiments [48] with a frequencies
of Ω=2π ¼ 10 GHz and vF ¼ 2 × 105 m=s, the intensity
scale is just I0 ≈ 0.2 W=m2, illustrating that low frequen-
cies greatly help in reducing the required power.
However, we believe there can be completely different
conditions and material platforms for accessing the FFL
regime. For example, for the experiments of Ref. [67]
that studied Floquet-Bloch states in the surface of
topological insulators with mid-infrared pulses of
frequency ℏΩ ¼ 120 meV, it is estimated that
jφl¼�1j2 ∼ ðevFjEj=ℏΩ2Þ2 ∼ 0.25, and therefore meets
the criteria. For the experiments of Ref. [68] realizing
the light-induced anomalous Hall effect in graphene
(vF ¼ 106 m=s) with a similar midinfrared frequency, the
intensity scale is I0 ≈ 4 × 1012 W=m2, which is the same as
their typical pulse peak intensity. Therefore, these type of
experiments are well posed to prepare the FFL with pump
pulses and investigate its subsequent decay. Finally, to
comment on the potential impact of electron-electron
interactions, we note that they will lead to an increase of
collisions among particles and therefore to higher temper-
ature of the electrons in the steady state with respect to the
bath, which would tend to smear the sharpness of the
staircase distribution. One strategy to mitigate this in
experiments is to consider two-dimensional electron sys-
tems separated by some thin dielectric from a 3D metallic
gate that can screen the interactions and also act as a bath
via electron tunneling. But more broadly speaking, under-
standing the impact of interactions in the steady state as
well as its modifications for other kinds of baths such as
bosons, are important components of the problem that we
hope to address in future studies.
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