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A series of recent experimental works on twisted MoTe2 homobilayers have unveiled an abundance of
exotic states in this system. Valley-polarized quantum anomalous Hall states have been identified at hole
doping of ν ¼ −1, and the fractional quantum anomalous Hall effect is observed at ν ¼ −2=3 and
ν ¼ −3=5. In this Letter, we investigate the electronic properties of AA-stacked twisted bilayer MoTe2 at
ν ¼ −2 by k-space Hartree-Fock calculations. We identify a series of phases, among which a noteworthy
phase is the antiferromagnetic Chern insulator, stabilized by an external electric field. We attribute the
existence of this Chern insulator to an antiferromagnetic instability at a topological phase transition
between the quantum spin hall phase and a band insulator phase. Our research proposes the potential of
realizing a Chern insulator beyond ν ¼ −1, and contributes fresh perspectives on the interplay between
band topology and electron-electron correlations in moiré superlattices.
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Introduction.—Since the experimental discovery of cor-
related states and superconductivity in twisted bilayer
graphene [1,2], two-dimensional moiré superlattices have
emerged as a revolutionary platform in the study of electron-
electron correlations. Apart from graphene moiré super-
lattices, transition metal dichalcogenides (TMD) moiré
superlattices have been under intensive investigation due to
the reduced number of degrees of freedom [3,4]. For example,
heterobilayer TMD moiré superlattices have been found to
host magnetic phases [5–8], charge ordered phases [5,9–11]
and quantum anomalous Hall states [12–18]. Recently,
there has been a surge in research focused on homobilayer
TMD moiré superlattices [19–24]. Compared with hetero-
bilayers, homobilayer TMDmoiré superlattices host intrinsic
topological band structures [4,25]. Moreover, both layers’
electrons actively contribute to the low-energy physics
for homobilayers, which provides a unique opportunity to
tune the electronic properties with an out-of-plane electric
field [22,26].
Recently, a series of works on twisted MoTe2 homobi-

layers (tMoTe2) have unveiled an abundance of topological
states in this system. At hole doping ν ¼ −1 (one hole per
moiré unit cell), valley-polarized quantum anomalous Hall
states are observed [23,27–29]. At ν ¼ −2=3 and ν ¼ −3=5,
a fractional Chern insulator is observed at zero magnetic
field [23,27–29]. The emergence of these states arises from
quenched kinetic energy in the flat bands [30–32].
Following the same logic, it would appear that there might
not be asmany interesting observations at ν ¼ −2, for which
the flat bands are completely filled. In this scenario, for
electron-electron interactions to play a significant role in

low-energy dynamics, the interaction energy has to over-
come the band gap. Fortunately, the band gap can be
substantially reduced by an external electric field, hinting
at the potential for gate-tunable correlated states in twisted
tMoTe2. Such prospects add a captivating dimension to the
exploration of this fascinating material.
In this Letter, we investigate the electronic properties of

AA-stacked tMoTe2 at ν ¼ −2 by k-space Hartree-Fock
calculations. The phase diagram of this system reveals four
distinct states: an antiferromagnetic Chern insulator, an in-
plane antiferromagnetic phase, a quantum spin hall (QSH)
phase, and a trivial band insulator (BI). The existence of
the in-plane antiferromagnetic phase can be explained by
a spin model. The emergence of the antiferromagnetic
Chern insulator is attributed to an instability of the phase
boundary between the QSH and the BI phases with respect
to an antiferromagnetic perturbation under a sufficiently
large Coulomb interaction. The antiferromagnetic Chern
insulator exists across different twist angles, with the
topmost twomoiré bands exhibiting distinct Chern numbers
at different angles. In addition, we verify the existence of the
antiferromagnetic Chern insulator phase by density matrix
renormalization group (DMRG) calculations [33,34]. Our
Letter points out the possibility of realizing aChern insulator
beyond ν ¼ −1 and provides new insights into the interplay
between the band topology and electron-electron correla-
tions in moiré superlattices.
Method.—In monolayer MoTe2, the conduction and

valence band edges are located at the corners of the
Brillouin zone, i.e., the K and K0 points. Owing to strong
spin-orbit interaction, electrons in the K and K0 valleys
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have opposite spins [35]. The major effect of the moiré
superlattice is to induce coupling between Bloch functions
separated by moiré reciprocal lattice vectors, which is
captured by a continuum model. The separation between
the K and K0 points is much larger than the length scale of
the moiré Brillouin zone (mBZ), such that the continuum
model is block diagonal in the valley indices. For the K
valley, the continuum model Hamiltonian reads as [4,25]

HK ¼ −
ℏ2

2m�

 
ðk − κþÞ2 0

0 ðk − κ−Þ2

!

þ
�ΔbðrÞ þ ΔD=2 ΔTðrÞ

Δ†
TðrÞ ΔtðrÞ − ΔD=2

�
; ð1Þ

where the intralayer and interlayer moiré potentials
are Δb=tðrÞ ¼ 2V

P
i¼1;3;5 cosðGi · r� ϕÞ, and ΔT ¼

wð1þ e−iG2·r þ e−iG3·rÞ, respectively. Gi ¼ ð4π= ffiffiffi
3

p
aMÞ

fcos½ði − 1Þ=3�π; sin½ði − 1Þ=3�πg are moiré reciprocal lat-
tice vectors with aM being the moiré lattice constant. κþ ¼
2G1=3 − G2=3 and κ− ¼ G1=3þ G2=3 are the mBZ cor-
ners. m� is the effective mass and is taken as 0.6me, where
me is the free electron mass. Layer-differentiating potential
proportional to ΔD is included in HK to take into account
the out-of-plane electric field. For the K0 valley, the
continuummodel Hamiltonian can be deduced by the acting
time reversal operator on HK . The parameters for the
continuum model are fitted from large-scale density func-
tional theory calculations [31]. Specifically, ðV;ϕ; wÞ ¼
ð20.8 meV; 107.7°;−23.8 meVÞ.
To investigate the effect of electron-electron interaction,

we carry out self-consistent Hartree-Fock calculations
based on the continuum model. The solution of the
continuum model is the envelope function of the atomistic
wave function, and the envelope function is expanded as
superposition of plane waves. In the basis of the plane
waves (labeled by momentum k), the electron-electron
interaction reads as

Hint ¼
1

2A

X
l;l0;τ;τ0;k;k0;q

Vll0 ðqÞc†lτkþqc
†
l0τ0k0−qcl0τ0k0clτk; ð2Þ

where A is the area of the system, l and l0 label layers, and τ
and τ0 label valleys. The Coulomb interaction takes the
form [36]

Vll0 ðqÞ ¼
e2

2ϵϵ0jqj
�
tanhðdgatejqjÞþ ð1− δll0 Þðe−djqj − 1Þ�;

ð3Þ

where ϵ is the relative dielectric constant, ϵ0 is the vacuum
permittivity, dgate is the distance between the sample and
the symmetric metal gate, and d is the distance between the
two monolayers. The interlayer Coulomb interaction is

reduced from the intralayer Coulomb interaction by
e−djqj − 1. This correction is only valid for d ≪ dgate [36].
The self-consistent Hartree-Fock calculations are performed
in the reciprocal space without projecting the interaction to
bands near the charge neutrality point.
Phase diagram at 3.89°.—At twist angle 3.89°, the

noninteracting single-particle band structure is presented
in Fig. 1. The topmost moiré band from the K (K0) valley
has Chern number 1 (−1), and the second moiré band has
the opposite Chern number. Figure 1(c) presents the
Hartree-Fock phase diagram as a function of ϵ and ΔD
at twist angle θ ¼ 3.89°. For a noninteracting limit
(ϵ → ∞), the system exhibits a QSH phase at ΔD ¼ 0.
The QSH state can be turned into a trivial BI state via band
inversions at the κþ and κ− point for large ΔD (details in the
Supplemental Material [37]). As the interacting strength
increases, two more phases emerge. With ΔD ¼ 0, the
AFMxy phase is stabilized for small ϵ. In this phase, the
two sublattices possess opposite magnetic moments in
the x-y plane [inset of Fig. 1(c)]. For larger ΔD, the
orientation of the magnetic moment changes to the �z
direction, and the AFMz phase is stabilized [inset of
Fig. 1(c)]. We have also performed Hartree-Fock calcu-
lations in a

ffiffiffi
3

p
×

ffiffiffi
3

p
supercell, and no translational

symmetry breaking phases are found. The phase transitions
from AFMxy to AFMz and from AFMz to BI are
characterized as first-order phase transitions whereas
the transition from QSH to BI is a second-order phase
transition. Based on our numerical evidence, the transition
between QSH and AFMxy is more likely to be a second-
order phase transition (Supplemental Material [37]).
Most interestingly, the AFMz phase is an antiferromag-

netic Chern insulator. The quasiparticle band structure of
AFMz features two massive Dirac points [Fig. 1(d)] at κþ
and κ−, both of which contribute π Berry flux, and the total
Chern number is 1.
A real-space picture can help one understand the phase

diagram in Fig. 1(c). The moiré potential has local mini-
mums at the MX (XM) stacking for the top and bottom
layers, respectively, where the Mo (Te) atoms sit on top of
the Te (Mo) atoms. As shown in Fig. 1(a), these local
minimums form a buckled honeycomb lattice, where the A
(B) sublattices are from the top (bottom) layer. Therefore,
tMoTe2 can be qualitatively understood as a Kane-Mele-
Hubbard model [39–42]:

HKMH ¼ Hsingle þ
X
i

Uni↑ni↓;

Hsingle ¼
X
hi;ji;σ

t1c
†
iσcjσ þ

X
⟪i;j⟫;σ

t2eiσνijθc
†
iσcjσ

þ 1

2

X
i∈A

ΔDc
†
iσciσ −

1

2

X
i∈B

ΔDc
†
iσciσ; ð4Þ

where t1 is the nearest-neighbor hopping, t2 is the next-
nearest-neighbor hopping amplitude, and U is the on site
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Coulomb interaction. In Eq. (4), we have performed a
particle-hole transformation, and c†iσ is the creation operator
of a hole at site iwith spin σ. The phase of the next-nearest-
neighbor hopping is �νijθ (þ for spin up holes), where
νij ¼ 1 (νij ¼ −1) if the hopping is along (opposite to) the
direction of the arrows in Fig. 1(a). If the top four moiré
bands are well separated from the remaining bands, θ ¼
−π=3 can be deduced from momentum mismatch via
Peierls substitution [4]. The phase diagram of the Kane-
Mele-Hubbard model as a function of U and ΔD is first
obtained in Ref. [43] for θ ¼ π=2. We obtain a similar
phase diagram for θ ¼ −π=3; see the Supplemental
Material [37]. We find the phase diagrams for the con-
tinuum model and the Kane-Mele-Hubbard model are
qualitatively similar.
The Kane-Mele-Hubbard model provides a valuable

starting point for understanding the phase diagram at twist
angle 3.89°. At ν ¼ −2, without the electric field, each site
is occupied by one electron. In the strong coupling regime,
the Kane-Mele-Hubbard model can be projected into a spin
model [42,44,45]:

Hspin ¼ J1
X
hi;ji

Si · Sj þ
X
⟪i;j⟫

Jz2S
z
i S

z
j

þ Jxy2 ðSxi Sxj þ Syi S
y
jÞ þDðSi × SjÞ · ẑ; ð5Þ

with J1 ¼ 4t21=U, Jz2 ¼ 4t22=U, Jxy2 ¼ 4t22 cosð2θÞ=U, and
D ¼ 4t22 sinð2θÞ=U. The direction for ⟪i; j⟫ follows the
arrows in Fig. 1(a). Therefore, J1 is always positive, leading
to antiferromagnetic interactions between the sublattices.
The sign of Jxy2 depends on the θ. For θ ¼ −π=3, Jxy2 < 0,
leading to the AFMxy phase in the Hartree-Fock phase
diagram. For other values of θ, the translational symmetry
breaking phase and spin liquid phase may appear [45].
In addition, the Kane-Mele-Hubbard model enables

real-space DMRG calculations, allowing us to validate
our results beyond mean field approximation for moderate
size systems. We consider a three-leg armchair infinite
nanotube geometry. The out-of-plane Néel order parame-
ters jSzj of quasi-one-dimensional phases are calculated and
shown in Fig. 1(e), as an indication of the intermediate
AFMz phase. The AFMxy and BI can be characterized by
in-plane spin-spin correlation length, which should be very
large in the AFMxy region [46]. Even in the proposed
AFMz region, we find that this correlation length is similar
to or larger than the tube perimeter, i.e., three lattice
constants. This calls for a larger-scale calculation for a
quantitative inference of the 2D phase diagram.
Phase diagram at 6°.—Twisted bilayer MoTe2 cannot

always be characterized by a Kane-Mele-Hubbard model.
For example, with increasing twist angle, a topological
phase transition will happen between the second and the
third topmost moiré bands. As a result, the two topmost
moiré bands from the K valley will have the same Chern

FIG. 1. (a) Real-space model for tMoTe2 at 3.89°. Orange
(green) circles represent MX (XM) stackings. (b) The moiré
band structure with an out-of-plane electric field of
ΔD ¼ 5 meV. The orange (green) arrows indicate the states
are mainly from the bottom (top) layer, and the up (down)
arrows indicate spin up (down) states. (c) Phase diagram of
k-space Hartree Fock calculation vs displacement field ΔD
and dielectric constant ϵ at twist angle 3.89°. In the calculations,
an 18 × 18 mesh in the reciprocal space is used and 196 bands
are included. Inset left (right) is the illustration of the in-plane
(out-of-plane) spin texture of the AFMxy (AFMz) phase.
(d) The quasiparticle band structure of the AFMz Chern
insulator phase at ΔD ¼ 32 meV and ϵ ¼ 33 as denoted as
the blue star in (c). (e) DMRG calculation of the Kane-Mele-
Hubbard model with U ¼ 13t1. The calculation is performed
with bond dimensions 9600, 12 000, and 15 000. The inset
shows a linear fit of order parameter over the two-site DMRG
truncation errors [38] for the three bond dimensions with
ΔD ¼ 10.2t1. Most fits yield invisible error bars except for
ΔD ¼ 9.6t1 and 9.8t1 (with cross labels) with an error compa-
rable to the values. For these two, the 15 000 bond dimension
data are plotted instead. The challenges may be a consequence
of nearby weak first-order transition or quantum criticality.
(f) Sketch of the gap opening process of the quasiparticle band
structure from the nonmagnetic phases at the QSH-BI phase
boundary (black lines) to the AFMz phase (red lines). Spin
orientation of the bands is denoted by black arrows.
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number, defying a two-orbital characterization. Even prior
to the aforementioned topological phase transition, the size
of the Wannier orbitals begins to diverge as the transition
point is approached. Large Wannier orbitals imply the
necessity of introducing intersite Coulomb interactions,
including density-density interactions and exchange inter-
actions. In all of the above senarios, the Kane-Mele-
Hubbard model is insufficient for describing the electronic
structure of tMoTe2.
To investigate the phase diagram of tMoTe2 when the

Kane-Mele-Hubbard model is not useful, we carry out a
Hartree-Fock calculation at twist angle 6°. The noninter-
acting band structure for the K valley is shown in Fig. 2(a),
where the two topmost moiré bands have the same Chern
numberþ1. The third topmost band is entangled with lower
bands, making it even impossible to construct a three-
orbital tight binding model.
In Fig. 2(b), we present the phase diagram of tMoTe2 at

6°. Most phases at twist angle 3.89° can still be found at 6°.
There are, however, cases where Coulomb interactions are
not sufficient to open up a global gap in the Hartree-Fock
calculations, and these phases are labeled as metal phases.
The antiferromagnetic phase now exists at a higher external
electric field, which is needed to tune the more dispersive
bands at larger twist angles.
The emergence of the AFMz phase.—Figure 2(b) offers

valuable clues in understanding the existence of the
antiferromagnetic Chern insulator phase: the phase emerges
from the boundary between the QSH phase and the BI
phase. Therefore, we investigate the stability of the QSH-BI
phase boundary with respect to various perturbations.
Both QSH and BI are time reversal invariant phases. As a

result, the Hartree-Fock quasiparticle band energies respect
ϵαðkÞ ¼ ϵαð−kÞ. Since magnetic perturbations are odd
under time reversal symmetry, for a single band that is
well separated from other bands by an energy gap, the

first-order perturbative corrections to quasiparticle band
energies satisify δϵαðkÞ ≈ −δϵαð−kÞ [47]. For example, the
energies of the lowest band in Fig. 1(f) shift in opposite
directions at κ− and κþ under an AFMz perturbation (black
vs red lines; highlighted by orange circles). Therefore, the
change of the total quasiparticle energy will be mainly
contributed by the k points where the quasiparticle energies
might shift above or below the Fermi energy. In particular,
at the QSH-BI phase boundary, the change of the total
quasiparticle energy is dominated by the gap opening at the
Dirac points [see Fig. 1(f)]. Owing to the spin-split nature
of the quasiparticle band structure [see Fig. 1(f)], to the first
order in perturbation theory, a ferromagnetic perturbation
or an antiferromagnetic perturbation in the x-y plane will
not open up gaps at the Dirac points. Therefore, an
antiferromagnetic perturbation in the z direction will have
the best opportunity to lower the kinetic energy, leading to
the AFMz Chern insulator phase.
Twist angle dependence.—The variation of twist angle

changes the period of the moiré potential and serves as
another tuning knob in moiré systems. In Fig. 3, we present
the phase diagram where the twist angle θ is a continuous
variable. It can be seen that the AFMz Chern insulator
exists in a wide range of twist angles. In addition, in this
phase diagram, the AFMz Chern insulator phase again
originates from the QSH-BI boundary, reinforcing the
heuristic argument presented above. We note that our
calculations are most accurate around 3.89°, where the
continuum model parameters are extracted from the density
functional theory calculations.
In summary, we have discovered an antiferromagnetic

Chern state in twisted bilayer MoTe2 at hole doping ν ¼ −2
under an out-of-plane electric field. Experimentally, owing
to a vanishing total magnetic moment, a direct or indirect
measurement of Hall conductivity is required to confirm the
existence of state. The easiest route is probably inferring

FIG. 2. (a) The noninteracting band structure at twist angle 6°
without out-of-plane electric field. (b) The k-space Hartree-Fock
phase diagram at twist angle 6°. In the calculations, an 18 × 18
mesh in the reciprocal space is used and 196 bands are included.
The AFMxy and AFMz phase is still defined by the magnetic
moments at MX and XM stackings, although charge density also
appears at the MM stacking, where the Mo atoms sit on top of the
Mo atoms. FIG. 3. The phase diagram of the continuum model at ϵ ¼ 20.
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the Hall conductivity by the Streda formula [23], which
requires the use of an external magnetic field that does not
alter the system’smagnetic state. For a spinmodel,where the
localmagneticmoments have fixedmagnitudes, the stability
of an antiferromagnetic phase under an external magnetic
field is usually determined by magnetic anisotropy. In the
current case, however, the magnitudes of local magnetic
moments are not fixed, and the antiferromagnetic Chern
state does not admit a straightforward spin model descrip-
tion. Further investigations are needed to determine the
stability of the antiferromagnetic Chern state with respect to
an external magnetic field.
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