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We propose a protocol to excite the Goldstone modes of a supersolid dipolar Bose-Einstein condensed
gas confined in a ring geometry. By abruptly removing an applied periodic modulation proportional to
cosðφÞ, where φ is the azimuthal angle, we explore the resulting oscillations of the gas by solving the
extended Gross-Pitaevskii equation. The value of the two longitudinal sound velocities exhibited in the
supersolid phase are analyzed using the hydrodynamic theory of supersolids at zero temperature, which
explicitly takes into account both the superfluid and the crystal nature of the system. This approach allows
for the determination of the layer compressibility modulus as well as of the superfluid fraction, fS, in
agreement with the Leggett estimate of the nonclassical moment of inertia.
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A key consequence of the spontaneous breaking of
continuous symmetries is the occurrence of Goldstone
modes, which, in the presence of finite range interactions,
take the form of gapless excitations in the long wavelength
limit. The identification and the experimental observation of
the Goldstone modes, then, represents a question of central
interest in various fields of science, including elementary
particle physics, magnetism, superfluidity, and supercon-
ductivity. The recent realization of supersolidity has raised
the question of the identification of the corresponding
Goldstone modes, which are the consequence of the sponta-
neous and simultaneous breaking of phase symmetry and
translational invariance, ensuring the nonintuitive coexist-
ence of superfluid and crystal features. From the theoretical
side, the study of the Goldstone modes in supersolids has a
long history, starting from the pioneering work of Andreev
and Lifshitz [1] (see also [2–6]), and more recent papers
based on numerical simulations on atomic Bose gases
interacting with soft-core potentials [7–9], spin orbit
coupled gases (see the recent reviews [10,11] and reference
therein), condensation inmultimode cavity [12], and dipolar
gases [13] (see also the recent perspective [14] and refer-
ences therein). First experimental evidence for the occur-
rence of dispersive Goldstone modes in a supersolid has
been recently reported in the case of a dipolar gas confined in
a harmonic trap, where the modes take the form of
discretized oscillations and in particular with the emergence
of novel crystal-like oscillations as soon as one enters the
supersolid phase [15–17].
The use of harmonic trapping potentials, inducing the

nonhomogeneity of the gas, together with the appearance of
a number of droplets that form the nonsuperfluid (crystal)
component of the gas, limits, however, the possibility to
fully appreciate the rich dynamics of the dipolar gas as a

bulk supersolid. Theoretically, the speeds of sounds for
soft-core [7,8] and dipolar [13,18] gases in the thermo-
dynamic limit have already been the object of numerical
simulations in the supersolid phase, based on the use of
proper periodic boundary conditions. In particular, in the
very recent work [18], which appeared while completing
our work, a detailed analysis of the two longitudinal sounds
along an infinite tube has been reported as a function of the
relevant interaction parameters. Experimentally, reaching
the thermodynamic limit in a dipolar gas is, however,
strongly inhibited if one uses box potentials because of the
tendency of the dipoles to accumulate near the borders of
the wall, giving rise to typical edge effects [19,20].
For the above reasons, in this Letter we propose to use a

ring potential, which naturally fulfills the periodic boun-
dary conditions along the azimuthal angle direction,
allowing for an efficient way to approach the thermody-
namic limit. Ring traps provide a simple realization of
matter wave circuits, with important perspectives in the
emerging field of atomtronics [21,22]. The longitudinal
Goldstone modes of the ring trapped dipolar gas are then
excited by suddenly removing a periodic annular pertur-
bation and the resulting values of the sound velocities are
analyzed using the hydrodynamic theory of supersolids.
Supersolid hydrodynamics actually provides fundamental
new insights on the origin of the two sound modes. In
particular, employing the calculated values of the sound
velocities, we determine for the first time the layer
compressibility modulus and confirm the prediction for
the superfluid fraction of a dipolar gas in the supersolid
phase based on the nonclassical moment of inertia and its
concurrence with Leggett’s estimation [23].
The model and its quantum phases.—In a dilute dipolar

Bose gas, the atoms interact by a delta-contact potential
VcðrÞ¼gδðrÞ, with the coupling constant g¼4πℏ2a=m>0
fixed by the atomic massm and the s-wave scattering length
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a; and by the dipolar potential VddðrÞ ¼ ðμ0μ2=4πÞ½ð1 −
3cos2θÞ=jrj3� with θ the angle between r and the direction z
of the externally applied magnetic field, which aligns the
atomic magnetic dipole moments μ. The most important
parameter to determine the zero temperature phase dia-
gram of the gas is the ratio between the strengths of the
contact and the dipolar interactions, ϵdd ¼ add=a with
add ¼ μ0μ

2=12πℏ2, the so-called dipolar length. For small
enough ϵdd the system forms a Bose-Einstein condensate
(BEC), while by increasing it beyond a certain threshold, in
three-dimensional uniform configurations, the system col-
lapses due to the attractive nature of the dipolar interaction.
Confining the gas along the z direction prevents this
collapse, and three distinct phases occur: (i) a homo-
geneous BEC (superfluid phase), (ii) a supersolid phase
in a very small interval of ϵdd, and (iii) a droplet crystal
phase, i.e., independent droplets arranged in a crystal
structure. In the present Letter we consider moreover that
the gas is confined in the x-y plane by a ring-shaped
potential Vextðr⊥; zÞ ¼ m

�
ω2⊥ðr⊥ − R0Þ2 þ ω2

zz2
�
=2 with

r⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, of radius R0 ¼ 7.64 μm and trap frequen-

cies ωz ¼ ω⊥ ¼ 2π × 100 Hz, leading to the three phases
reported in Fig. 2, calculated for N ¼ 80 000 164Dy atoms,
corresponding to add ¼ 132a0, where a0 is the Bohr radius.
We obtain a ring-shaped cloud of length L ≈ 49 μm [24]
and width FWHMXY changing from 1.41 μm in the super-
fluid to 0.7 μm approaching the crystal phase (see Fig. 2).
Because of magnetostriction, the cloud is elongated in the
third direction with FWHMZ ≈ 4 μm. The system is
numerically studied within the so-called extended Gross-
Pitaevskii equation [25], which in the last few years has
been systematically employed to describe the equilibrium
and dynamic properties of dipolar supersolids in reasonably
good agreement with the experimental findings.
The protocol.—We first determine the state of the gas by

applying a small static perturbation of the form −V0 cosφ,
where φ is the azimuthal angle along the ring, which
produces stationary density modulations. We then suddenly
set V0 ¼ 0, resulting in the excitation of the longitudinal
phonon modes propagating along the ring. Similar proto-
cols have been already applied to investigate the Doppler
effect due to the presence of quantized vortices in a ring
[26] and, more recently, to investigate the effect of super-
fluidity on the propagation of sound in a dilute Bose gas
confined in a box in the presence of an external periodic
potential [27].
An easy analysis of the response of the system can be

obtained considering sufficiently large ring sizes for which
the ring can be mapped in a linear tube configuration with
imposed periodic boundary conditions. In particular, we
assume that the length L of the ring is much larger than its
width, so that one can safely identify cosðφÞ with cosðqxÞ,
where q ¼ 2π=L is the wave vector of the longitudinal
excitation and the variable x, with 0 ≤ x ≤ L, is the
longitudinal coordinate along the tube. According to linear

response theory, the quantity FðtÞ ¼ hcosφiðtÞ should
show, in the supersolid phase, a beating of two modes
(see inset in Fig. 3),

FðtÞ ¼ V0

X
i¼�

χiðqÞ cosðωiðqÞtÞ; ð1Þ

with ωiðqÞ approaching, for sufficiently small q (and hence
large L), the linear phonon dispersion ωiðqÞ ≃ ciq, with cþ
and c− hereafter called upper and lower sound velocities,
respectively. The quantities χiðqÞ, i ¼ �, define the con-
tributions of the two modes to the static response and hence
to the compressibility sum rule according to

χðqÞ ¼ χþðqÞ þ χ−ðqÞ ¼
Z

∞

0

dω
Sðq;ωÞ

ω
¼
q→0

Nκ

2
; ð2Þ

with κ the compressibility of the system (hereafter, we set
ℏ ¼ m ¼ 1, with m the atomic mass), while Sðq;ωÞ is the
dynamic structure factor. From the analysis of the meas-
urable signal FðtÞ of Eq. (1) one can then determine the
sound velocities cþ and c−, and the relative contribution

R≡ χ−
χ

¼ c2þ − c2κ
c2þ − c2−

ð3Þ

of the lowest (lower sound) mode to the compressibility
sum rule, where we have defined cκ ¼

ffiffiffiffiffiffiffi
κ−1

p
. Analogously,

the contribution of lower sound to the f sum rule m1 ¼R
∞
0 dω Sðq;ωÞω ¼ Nq2=2 is given by

mð−Þ
1

m1

¼ c2−
c2κ

c2þ − c2κ
c2þ − c2−

: ð4Þ

However, in the vicinity of the superfluid-supersolid
phase transition, within the supersolid region, we find that
our perturbation excites additional modes and Eqs. (3) and
(4), based on the two-mode approximation, are less
accurate.
Hydrodynamic model for supersolidity.—Since the two

sound modes are the Nambu-Goldstone bosons due to the
spontaneous breaking of translational symmetry and the
Uð1Þ symmetry related to the conserved particle number,
the low-energy dynamics of a supersolid exhibits universal
features and can be described by hydrodynamics [1–4,28].
In the following we will use the hydrodynamic approach to
supersolidity recently elaborated by Hofmann and Zwerger
[6], inspired by the work of Yoo and Dorsey [5]. This
formulation, applicable to Galilean invariant systems, is
particularly suitable to investigate the behavior of longi-
tudinal phonons in the presence of a layer structure. This is
reasonably well realized in highly elongated configurations
of a dipolar supersolid, where the droplets effectively play
the role of the layers. Neglecting the effects of the strain
density coupling included in the general formulation of
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supersolid hydrodynamics [5,29], the approach, in this
minimal hydrodynamic formulation, provides the follow-
ing expression for the two sound velocities [6]:

c2� ¼ c2κ
2

�
1þ βκ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βκÞ2 − 4fSβκ

q �
; ð5Þ

which depends on three fundamental parameters: the
velocity cκ, fixed by the compressibility parameter κ; the
renormalized layer compressibility modulus β ¼ B=ρn,
given by the layer compressibility modulus B [30] divided
by the normal density ρn ¼ ρ̄ − ρs; and the superfluid
fraction fS ¼ ρs=ρ̄, with ρ̄ the average 1D density. In our
one-dimensional structure, B is the only elastic constant,
corresponding to the energy cost due to the change in the
separation between the peaks. The relevant parameters βκ
and fS can be expressed in terms of the upper and
lower sound velocities according to the relations βκ ¼
ðc2þ þ c2−Þ=c2κ − 1 and fSβκ ¼ c2þc2−=c4κ , which directly
follow from Eq. (5).
Let us now discuss the consequences of the hydro-

dynamic model in different phases of dipolar Bose gases.
(i) Superfluid phase (fS ¼ 1 and β ¼ 0): Only the

upper solution (upper sound) of Eq. (5) is relevant and
cþ ¼ cκ.
(ii) Supersolid phase (0 < fs < 1 and β ≠ 0): In this

most interesting case the deviations of the sound speeds
from cκ are determined by the dimensionless combination
βκ and by the superfluid fraction fS. In particular, near the
transition to the crystal phase, where the superfluid fraction
is expected to vanish, the sound velocities approach the
values

cþ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βκ −

fSβκ
1þ βκ

s
cκ; c− →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fS

βκ

1þ βκ

s
cκ; ð6Þ

while the ratio R given by Eq. (3) approaches the value
βκ=ð1þ βκÞ. It is worth noticing the close analogy between
Eq. (6) and the dependence of the second sound velocity
on the superfluid density predicted by Landau’s two-
fluid hydrodynamic theory at finite temperature [31] (see
also [32]).
It is also interesting to note that when the combination βκ

becomes very large the lower sound velocity takes the form
c− ¼ ffiffiffiffiffi

fS
p

cκ in the whole supersolid phase, it exhausts the
compressibility sum rule, while its relative contribution to
the f-sum rule [see Eq. (4)] exactly coincides with the
superfluid fraction fS. These results are consistent with the
behavior of a superfluid in the presence of an optical lattice,
where translational invariance is not broken spontaneously
and the upper mode ωþ ¼ cþq is replaced by a gapped
excitation.
(iii) Crystal phase (fs ¼ 0 and β ≠ 0): Only the upper

solution survives in this case and the sound velocity takes

the simple expression cþ ¼ cκ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βκ

p
. Notice however

that, differently from what happens in the superfluid phase,
the upper sound mode, while exhausting the f-sum rule,
does not exhaust the compressibility sum rule, revealing the
occurrence of a diffusive mode at zero frequency. Such a
mode represents the natural continuation of the lower sound
mode beyond the transition to the crystal phase [33] and
corresponds to the diffusive permeation mode of a smectic-
A liquid crystal [6,33]. The evolution of the lower mode
from a propagating to a diffusive one, is analogous to the
fate of second sound in a uniform fluid above the superfluid
critical temperature (see, e.g., [34,35]).
Results.—The compressibility κ of the gas can be

extracted from the knowledge of the density changes
caused by the static perturbation −V0 cosðφÞ according
to linear response theory [see Eq. (2)]. Another option,
which would not require the actual knowledge of V0, is to
measure the relative contribution R [see Eq. (3)] of the
lower sound mode to the compressibility sum rule through
the weights of the beating signal of Eq. (1).
Our protocol actually measures the static response

function χðqÞ=N [see Eqs. (1) and (2)], which coincides
with the compressibility κ only in the long-wavelength
limit q → 0. Because of the finite size of the ring, the
lowest accessible value is q ¼ 2π=L, and it is conse-
quently important to control the difference between
χðq ¼ 2π=LÞ=N and the compressibility parameter κ ¼
ðρ̄∂μ=∂ρ̄Þ−1, where μ is the chemical potential. In our case
the difference turns out to be about 15% in the superfluid
phase and up to 30% close to the crystal phase. For
consistency, we have used the values of κ given by the
“measured” values χðq ¼ 2π=LÞ. On the other hand, we
verified that the superfluid fraction fS, obtained by apply-
ing the hydrodynamic model to the results of the extended
Gross-Pitaevskii simulation employing our protocol, is
much less sensitive to finite size effects.
To illustrate the potential of the proposed protocol, in

Fig. 1 we report the dispersion for larger values of q, within
the superfluid phase, obtained by applying a perturbation

FIG. 1. Dispersion relation obtained using the proposed
protocol for three values of ϵdd approaching the superfluid-
supersolid phase transition. The roton minimum softens near
k ¼ ffiffiffi

2
p

=lz, where lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
is the harmonic oscillator

length along the confined direction [37].
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proportional to cosðnφÞ with n ¼ 1; 2;…, giving access to
the phonon-maxon-roton dispersion, for which experimen-
tal evidence was reported in a superfluid dipolar gas using
Bragg spectroscopy [36]. The figure clearly shows that the
roton minimum becomes more pronounced as one
approaches the transition to the supersolid phase, which
in our configuration occurs for ϵdd ¼ 1.387.
In Fig. 2 we show the density profiles in the ring

geometry calculated in the superfluid, supersolid, and
crystal phases [38]. In our simulations, based on the
extended Gross-Pitaevskii equation, we have considered
configurations with the same number of droplets (equal to
14) in both the supersolid and crystal phases. Actually,
exact energy minimization would predict a decrease of the
number of droplets when one approaches the transition to
the crystal phase, leading to the small discontinuities in the
resulting values of the observed quantities, which do not
however affect the main conclusions of our work. The
pinning of the number (and position) of droplets can be
achieved by introducing a small additional periodic poten-
tial during the initial stage of the supersolid state prepa-
ration. During the time evolution, once the periodic
potential is removed, we observe that the number of
droplets remains constant.
Figures 3 and 4 report the main results of our work,

based on the combined application of the protocol and of
the hydrodynamic model of supersolids. In Fig. 3 we show
the calculated upper and lower sound velocities as a
function of ϵdd, together with the value of cκ, which
coincides with the sound velocity in the superfluid phase.
The figure clearly reveals the decrease of the lower sound
velocity as one approaches the transition to the crystal
phase. Similar features have been reported in [18] obtained
for an infinite tube, confirming that our mesoscopic system
correctly approaches the thermodynamic limit. We include
also the lowest order expressions for the two sound speeds
when fs → 0, Eq. (6) (red and green continuous lines),
which are seen to be in good agreement with the calculated
values also when the superfluid density is not that small.

FIG. 2. Density plots of N ¼ 80 000 164Dy atoms in the
superfluid, supersolid and crystal phase (left, middle, and right
panel, respectively), integrated over the z axis, along which the
magnetic field B⃗ is aligned. Red contours mark 1% of the relative
density jΨðrÞj2=max jΨðrÞj2. FIG. 3. Sound velocities cþ and c− determined with the

protocol (green hexagons and red circles respectively) across
the superfluid-supersolid phase transition. The blue squares
correspond to cκðq ¼ 2π=LÞ. Both sound speeds are well
captured by Eq. (6) (green and red solid lines) even far from
the crystal phase. For completeness we also report the valuesffiffiffiffiffi
fS

p
cκ (gray solid line) found for an incompressible lattice (see

text). The inset presents the time evolution of F for two values of
ϵdd marked with solid lines of corresponding colors. The data
points are fitted with one (two) cosines in the superfluid
(supersolid) phase with excellent quality.

(a)

(b)

(c)

FIG. 4. Panel (a) displays dimensionless parameters κβ calcu-
lated using the hydrodynamic model (green squares), and the ratio
R ¼ χ−=χ (light blue diamonds) extracted from the time evolution
of Eq. (1). In panel (b) we show the emergence of finite layer
compressibility modulus B. In panel (c) we compare the extracted
value of superfluid fraction fS (purple diamonds) using the
hydrodynamic relations Eq. (5), with the value determined via
the nonclassical fraction ofmoment of inertia Eq. (7) (orange line).
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For comparison we also show the prediction c− ¼ ffiffiffiffiffi
fS

p
cκ

(gray continuous line), which would hold in the presence of
an optical lattice (B → ∞) and which badly reproduces the
actual values of c− in the supersolid phase. The standard
hydrodynamic expression c ¼ ffiffiffiffiffi

fS
p

cκ was actually suc-
cessfully employed by Tao et al. [40] and Chauvaeau et al.
[27] to extract the value of fS of a BEC gas in the presence
of an optical lattice (not a supersolid).
In Fig. 4(a) we report the results for the relevant

parameter βκ of the hydrodynamic model and the ratio R.
An interesting outcome of our analysis is that while the
speeds of sound, the compressibility, and the dimensionless
parameter βκ show a jump at the superfluid-supersolid
transition, the contribution of lower sound to the com-
pressibility sum rule, R, goes smoothly to zero. The same
continuous vanishing is observed for the layer compress-
ibility modulus B, as shown in Fig. 4(b). In Fig. 4(c)
we report the value of the superfluid fraction fS,
predicted by the analysis of the sound velocities:
fS ¼ c2þc2−=c2κðc2þ þ c2− − c2κÞ. As already pointed out
above, we have verified that this value of fS is very weakly
sensitive to finite size effects. Furthermore, repeating the
simulations with a larger value of the phonon wave vector,
q ¼ 4π=L, rather than 2π=L, we find that fS is modified
only by a few percent. Since the oscillation frequency has
also almost doubled, this would allow working on shorter
timescales, thereby reducing the consequences of the finite
lifetime of the system.
Moment of inertia and superfluid fraction.—Both the

layer compressibility and the superfluid fraction can, in
principle, be calculated from Gross-Pitaevskii theory (see,
for example, Josserand et al. [29]). In fact, the superfluid
fraction has been the object of several calculations based on
extended Gross-Pitaevskii theory (see, e.g., [13,18,41]) for
dipolar gases showing one-dimensional periodic configu-
rations. In our narrow ring configuration, the superfluid
fraction essentially coincides with the nonclassical fraction
of the moment of inertia

fS ≃ 1 −
Θ
Θrig

; ð7Þ

which is reported in Fig. 4(c) (orange line) for the
comparison with the value extracted from the calculated
sound velocities. The moment of inertia Θ is fixed by the
value hJzi of the angular momentum induced by a rota-
tional constraint of the form−ΩJz, according to the relation
Θ ¼ limΩ→0hJzi=Ω, while Θrig ¼ Nhx2 þ y2i is the
classical rigid value [42]. We also verified that fS from
Eq. (7) practically coincides with the rigorous Leggett’s
upper bound 2π

�
ρ̄
R
2π
0 dφ=ρðφÞ�−1 ≥ fS, where ρðφÞ is the

transverse integrated density along the ring [43].
The good agreement between the two predictions

shown in Fig. 4(c) reveals the consistency of the extended
Gross-Pitaevskii theory with the hydrodynamic model of
supersolidity.

In conclusion, we have suggested (i) a protocol to
determine the Goldstone modes of a supersolid dipolar
gas confined in a ring and (ii) a way to identify the relevant
parameters of the hydrodynamic theory of supersolids.
Our work, in particular, paves the way for an exper-

imental determination of the layer compressibility modulus
and of the superfluid fraction, based on the measurement of
sound velocities. On the theory side, our findings can be
used to extract the supersolid hydrodynamic parameters in
the thermodynamic limit by using the available estimations
of the sound speeds in infinite systems [13,18].
Finally, it is worth noticing that our protocol for the

extraction of the speed of sound and of the hydrodynamic
parameters is not limited to the dipolar supersolid platform
we discuss in this Letter. It can be equally applied to dipolar
mixtures, which are expected to show longer lifetimes than
single-component dipolar gases [44–47], and whose spec-
trum has been very recently addressed in [48]. Another very
interesting system for the application of our protocol are
semiconductor dipolar excitons, where ring configurations
naturally occur (see, e.g., [49,50] and references therein),
and cluster crystallization has been observed [51,52].
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