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Entanglement and Squeezing of the Optical Field Modes in High Harmonic Generation
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Squeezed optical fields are a powerful resource for a variety of investigations in basic research and
technology. However, the generation of intense squeezed light is challenging. Here, we show that intense
squeezed light can be produced using strongly laser driven atoms and the so far unrelated process of high
harmonic generation. We demonstrate that when the intensity of the driving field significantly depletes the
ground state of the atoms, leading to dipole moment correlations, the quantum state of the driving field and
the generated high harmonics are entangled and squeezed. Furthermore, we analyze how the resulting
quadrature squeezing of the fundamental laser mode after the interaction can be controlled. The findings
open the way for the generation of high intensity squeezed light states for a wide range of applications.
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Introduction.—The field of attosecond science [1] has
recently established connections to the field of quantum
optics and quantum information science [2,3]. This is
mainly due to the efforts in describing systems driven by
strong light fields with fully quantized approaches [4],
going beyond the extremely successful (semi)classical
methods [5]. In particular, the process of high harmonic
generation (HHG) [6,7] has been the subject of various
investigations to gain novel insights into the radiation
properties of the scattered field. These insights were
elusive from a semiclassical perspective without the
quantization of the electromagnetic field [8§—10]. It was
shown that the final quantum state of the field modes are
given by product coherent states [9,10], which holds when
assuming small depletion of the ground state and is related
to vanishing dipole moment correlations [11] (note that
a coherent state driving field needs to be assumed as well
[12]). However, further analysis has shown that the field
state generated in the HHG process is entangled [13,14].
In this work, we show how the description of the final
quantum optical state after HHG by means of product
coherent states is a consequence of the aforementioned
approximations [15]. In particular, we show that all field
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modes are naturally entangled, and further show that each
mode exhibits squeezing.

We illustrate the onset of mode squeezing for increasing
driving field strength, due to the increased ground state
depletion leading to dipole moment correlations. As a proof
of principle we further show that the quadrature squeezing
of the fundamental driving mode can be tuned by varying
the carrier-envelope phase (CEP) of the driving laser field.
This allows one to rotate the angle of the squeezed field
quadrature. This is particularly interesting since the squeez-
ing already occurs in the simplest scenario when driving
uncorrelated atoms with classical laser light. Thus far,
squeezed light has been considered to drive the HHG
process [16,17], showing an extension of the generated
spectrum. However, the other field properties besides
the spectrum, such as squeezing [8] or quantum coherence
[12], only received very limited attention in HHG. Here, we
will observe two-mode squeezing between all field modes
participating in the process, which naturally leads to an
entangled state between all modes [18].

Generating such squeezed and massive entangled states
is of importance for modern quantum technologies [19-21].
This further highlights the use of strong-laser driven
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systems for quantum state engineering of light [4,14],
which has already shown the ability to generate non-
classical states of light by means of optical Schrodinger
cat states [9] having sufficient photon numbers to induce
nonlinear phenomena [22]. This work further manifests
the intrinsic properties in the HHG process beyond the
semiclassical framework by showing that entanglement and
squeezing naturally occurs even in simple gas targets.

Quantum optical HHG without dipole correlations.—In
the quantum optical description of HHG the interaction of
an intense laser field, described by the coherent state |a),
with an atom in the ground state |g) is given by the
following interaction Hamiltonian (a detailed derivation
can be found in [4]):

Hy(1) = =d(1)E (1), (1)

where the electric field operator is given by

N
Eo(t) = —igf (1) ) \/a (aje™s —age™r),  (2)
g=1

with g > 2 being the harmonic field modes and the
dimensionless function f(¢) is introduced for using a
discrete set of modes and takes into account the finite
duration of the driving pulse. The electric field operator is
coupled to the time-dependent dipole moment operator

d(t) == Uj'c(t)dUsCO)‘ (3)

The dipole moment is in the interaction picture of the
reference frame U, (t) = 7 exp[—i [} dtH,.(7)], with
respect to the semiclassical Hamiltonian of the electron
H,.(t) = Hy — dE_(t). This semiclassical Hamiltonian is
the same as the one traditionally considered in semi-
classical HHG theory [6], where H, = p?/2 + V(r) is
the pure electronic Hamiltonian, and

E.(t) = Tr[Eg(n)|a){al] = igf (1)(ae™ —a’e™),  (4)

is the classical part of the driving laser electric field.
Solving the dynamics for the parametric process of HHG,
in which the electron is found in the ground state after the
end of the pulse, the dynamical equation for the field state
conditioned on the electronic state |g) is given by

i0,|®(2)) = —(gld(1)Eq(1)|¥(1)), (5)

where |®D(7)) = (g|¥(z)), with |¥(7)) the state of the total
system. The general solution for the field state conditioned
on the electronic ground state is given by [14]

[©(1)) = (9lU(1)|9)|®:) = K |Ps), (6)

with the conditioned evolution operator

Kuno = i exp |i [ atat o)1), ()

which solely acts on the initial field state |®;) = [{0,}). To
obtain the exact solution for the field we introduce the
identity on the electronic subspace 1 = |g) (g + [ dv|v)(v|
(for the sake of simplicity we use a 1d momentum
representation) [4,9,10], and in the spirit of the strong
field approximation (SFA) [5] we neglect continuum-
continuum transitions such that we have to solve the
following set of coupled equations:

0;|® (1)) = iEo(1){gld(t)|g)|D(2))
+i / dvEy(1)(gld(1)|v)|@(v. 1)), (8)

9,|® (v, 1)) = iEg(1)(v]d(1)|9)|®(2)), ©)

where we have defined |®(v,1)) = (v|¥(¢)) for the con-
tinuum state |v) of the electron with velocity v. Solving the
exact dynamics for |®(r)) in (7) is a tedious task, and
approximations based on the physical situation under
consideration are necessary. For instance, we can assume
that the depletion of the electronic ground state is small [6],
such that the second term in (8) can be neglected since it is
proportional to the total continuum state amplitude. The
remaining equation can then be solved and is given by [14]

Kuno=Tewp i ['arta(0)Eo(t)] =Dt (10

leading to a displacement operation for each mode
D[y] =[], Dlx,), with the coherent state displacements
Xq & [4dt f('){d(f'))e's", which are proportional to the
Fourier transform of the dipole moment expectation
value (gld(t)|g) = (d(t)). Note that the approximation to
obtain Eq. (10) is equivalent to neglecting dipole moment
correlations of the electron [11,13,14], such that the final
field state

(1)) = Krncl{04}) = Hg}) (11)

is given by product coherent states. We shall now show that
the actual field state in the process of HHG is not given by
product coherent states when taking into account the dipole
moment correlations, and we will see that the proper final
field state is entangled and squeezed.

Including dipole moment correlations.—The crucial
approximation to find the expression for the final field
state in (11) is based on the assumption of negligible
depletion of the ground state amplitude, equivalent to
neglecting dipole moment correlations of the electron.
That is, the approximation from (7) to (10) leading to
the product coherent states of all field modes (11), due

to a linear expression in the field operators ag) in (10).
In typical experiments with moderate laser intensities
(£ 1x 10" W/cm?), this assumption is reasonable, but
if we increase the intensity to higher values, the ground
state depletion can start to play a role. Formally, the dipole
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moment correlations imply that the exact interaction
Hamiltonian in the propagator (7) does not commute at
different times and remains an operator in the total Hilbert
space (H, ® Hp) of the electron plus the field

[H(t,), H (1) €EHy @ Hp. (12)

In contrast, the commutator of the approximate inter-
action Hamiltonian H' (1) = —(d(t))Ey(t) is just a com-
plex number, ie., [H)(t;),H}(t;)]€C, and thus, when
solving (7), the modes do not mix. Going beyond the linear
term of the field operator E,(f) would lead, for instance,
to squeezing in the field modes. Furthermore, all field
modes will become entangled due to the mixing of the

field operators ag) of the different modes. We therefore,
anticipate signatures of squeezing and entanglement between
the modes when going beyond the approximation of
neglecting dipole moment correlations. This is done by
solving (8) without the assumption of negligible ground state
depletion of the electron, i.e., taking into account the second
term of the continuum states. We thus solve the dynamics for
higher orders of the exact interaction Hamiltonian H(r) =
—d(t)Ey(t) instead of H; =—(d(t))E(t) as done in (10).
Especially, we want to find a solution of (8), and have

9| ®(1)) = iEo(1){d(1))|®(1))

— Ey(1 /dt/dvd* (Y)E
(13)

where d,,(t) = (v|d()|g). In order to find the evolution
operator for the state |®(z)), we perform a Markov type
approximation |®(#')) - |®(7)), and make use of the

identity on the electronic subspace [dv|v)(v|=1-|g){gl,
such that
0|®(1)) = [iEo(1)(d(1)) = (Q(NQ(N)]|@(r)).  (14)

where we have defined

moaKW%wwm—wmw (15)

Neglecting the commutators [Q(¢), Q(¢')] we find [23]

(0()0()) =3 5 (Q*(1). (16)
and thus, the evolution of the initial state reads
(1)) = D[] XSO [{0,}). (17)

Here, we have used that [Ey(7), Q(¢)] is a complex
number such that the two operations in (17) can be
factorized. The additional contribution is quadratic in
Q(t) and thus in the electric field operator and therefore

o(1)|®(7)),

leads to squeezing and mixing between the field modes.
Evaluating this term we find

//dtdt”E Ey(1")
— (d(N[d(e") = (d())).  (18)

As done in previous works [9,10], we will focus on the

fundamental mode of the driving field (with operators

aﬁﬂ = a")) since the amplitudes of the harmonics are much

smaller. We can thus write

(0*) = =¢(a")*(D(0)D(w)) + a*(D(0) D" (w))

— a'a(D(0)D"(w)) = aa" (D' (w)D(w))], ~ (19)
where we have considered r — oo and defined

Do) = [ arf)e d(e) - (@), (20

We expect all the averages to be comparable, i.e.,
(D(w0)D(w))| = (D' (w)D(w)) = B, where we have
used that D'(w)D(w) is self-adjoint and defined

(D(w)D(w))* = (D' (w)D'(w)) = Be ¥, such that we
can write
(0%) = 2¢°B \;E(aTei‘/’ _ae | @1

Interestingly, this includes a quadrature operator, leading
to squeezing along the momentum quadrature

i

P, = 7 (aTe¥ — ae™). (22)

We can now write down the final field state of the
fundamental mode after the process of HHG, which is
given by (in the laboratory frame)

@) = D[alD1]S(y)|0), (23)
which is a displaced and squeezed vacuum state, i.e., a high
photon number squeezed coherent state, with the squeezing
operator given by

S(w) = exp[~g°BP}]. (24)

We note that varying the squeezing phase y in (22)
allows us to consider squeezing along different directions
given by the quadrature operator P,,.

Bright squeezed states in HHG.—In order to quantify the
squeezing in the fundamental mode, we need the correla-
tions of the dipole moment fluctuations around its mean
D(w) in (20). We therefore numerically solve [24]

< / d[/ d[//f t/)f // zwt l(ut
)d(t")) = (d(@)(d(")],  (25)
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from which we obtain the single atom contribution to the
squeezing |(D(w)D(w))| = B. Taking into account that in
the interaction region we have N, atoms independently
contributing to the HHG process we can write the total
squeezing power via the squeezing parameter r = —g” BN,

in units of [db] = 10log;(e2""). In the derivation of the
final field state we have seen that including dipole moment
correlations can originate from the depletion of the ground
state. Since this depletion increases for increasing field
strength, we first demonstrate the onset of the field
squeezing in HHG. In Fig. 1 we show the squeezing of
the fundamental mode for increasing field strength for two
different pulse durations of the driving laser [29]. We can
clearly see that the squeezing increases for increasing field
strength due to the depletion of the ground state for fields of
higher intensity. On the other hand, shorter pulses induce
less depletion [5,30], and hence lead to smaller field
squeezing. In summary, we find that the more depletion
of the ground state, the squeezing increases. Thus, the
approximation of neglecting the continuum population
in (13), as done in previous works [9,10], does not hold
anymore. Furthermore, we observe that the imaginary part
of the squeezing parameter only contributes for relatively
large field strength compared to the onset of overall
squeezing [see Fig. 1(b)]. The appearance of imaginary
squeezing comes from breaking the time inversion

g % 24
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= 60 1.2
=T} Do
E 40 0.0 &
3 —12
e —24

0 —3.6

3 0

2

3-25

8

& =50
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Field strength, Ej

FIG. 1. (a) Squeezing parameter of the fundamental mode is

shown as a function of the field strength for pulses with different
duration. To convert to dB units, we employed the relation
[db] = 10log,o(e2""), with r = —g*BN,, denoting the squeezing
parameter. The target is an H atom in its 1s ground state. Here, we
have considered that N, = 5 x 103 atoms independently con-
tribute to HHG in the interaction region [9]. Specifically, T ~
21 fs (eight optical cycles) for the black curve with circular
markers, whereas T ~ 5 fs (two optical cycles) for the gray curve
with squared markers. (b) The dark blue curve represents the real
component (leftmost axis) of Eq. (25) for the aforementioned
pulse duration, while the lighter blue curve (rightmost axis)
represents its imaginary component. In both cases, the intensity
values range from 1 x 10'* W/cm? to 4 x 10'* W/cm? while the
central wavelength has been fixed to 4 = 800 nm. Depletion was
taken into account using the TBI model described in Ref. [31]
(see Supplemental Material [24]).

symmetry of the dipole moment correlations when taking
into account depletion effects. It happens that the dipole
correlations (25) are real within standard SFA theory
without depletion, while the depletion effects break the
time inversion symmetry leading to a complex valued
squeezing parameter (see Supplemental Material [24]).
Further, we note that for very short pulses the symmetry
can also be broken for specific CEP values, even for
relatively small depletion.

We have just seen that field squeezing occurs when the
ground state depletion becomes relevant and that breaking
the time inversion symmetry of the dipole correlations leads
to imaginary squeezing. Therefore, we shall now consider
explicit control schemes of the squeezing phase by tuning
the driving laser field properties. In Fig. 2 we show
the squeezing power in the fundamental mode after the
HHG process for varying the carrier-envelope phase of
the driving laser field. The squeezing phase yw =
targ[(D(w)D(w))] is indicated with the color coding for
each CEP value. We observe that by varying the CEP we
can control the squeezing power and the squeezing phase,
which allows one to rotate the angle of the quadrature
operator along which the squeezing occurs. The arrows at
different CEP values in Fig. 2 show different shapes of the
electric field of the driving pulse. To further illustrate the
effect of the squeezing on the fundamental mode, and to
show the rotation of the quadrature operator, the Wigner
function [32] of the state in (23) is shown in Fig. 3 for the
CEP values indicated by the arrows in Fig. 2. We can see
significant squeezing along the field quadratures and the
ability to rotate the squeezing ellipse by varying the CEP.
Further, we can see how the symmetry between the pulse
shapes (see Fig. 2) is reflected in the orientation of the
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& —0.1
100 200 0O 100 200 C 100 200 100 200
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e f [) ) [ ] .
Rk i i AN
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5 R o I jevesses i 0.0 =
@ . Nt iy
1 1 - 1 - 1 72.4
0 1 2 3 4 5 6

) CEP phase, ¢ (rad)

FIG. 2. Squeezing parameter of the fundamental mode
(D(w)D(w)) versus the carrier-envelope phase in dB units.
The driving laser field used in the calculations has a field strength
of E;=0.106 a.u. (corresponding to an intensity of
4 x 10" W/cm?) with a central frequency @ = 0.057 a.u. (cor-
responding to a wavelength 4 =800 nm) and a sin?-shaped
envelope with two cycles of total duration (approximately
5 fs). The laser field is plotted in the upper panels for each of
the CEP values indicated. The arrows in this plot correspond to
the values for which the Wigner function is shown in Fig. 3.
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—-2.5 0.0 2.5
Re(B8 — a — x1) Re(f—a—x1)

—25 0.0 25

FIG. 3.  Wigner function W() of the state of the fundamental
mode (23) for different values of the CEP ¢, with the same laser
parameters as specified in the caption of Fig. 2. The cases
(a)—(d) correspond to the arrows indicated in Fig. 2, illustrating
the ability to control the rotation of the quadrature squeezing by
varying the CEP.

squeezing quadrature showing a rotation of the Wigner
function in Fig. 3 between (a) and (d) of z. The same holds
between (b) and (c) in Fig. 3, which emphasizes that there
exists a relation between the CEP phase ¢ and the
squeezing phase y, such that when applying a sign change
and time-reversal symmetry operation on the driving pulse,
the squeezing phase changes according to y — 7 — .
Entanglement in HHG.—Now, we shall take into account
all harmonic field modes, to show that the final state of the
field is in general entangled. Starting from (18) by con-
sidering all modes in the field operator, we can write

(0%) = -¢*>  vaplajaj(D(w,)D(@,))
— aya,(D(w,)D'(w,)) + He.]. (26)

This is a generic bilinear Hermitian operator for all the
bosonic field modes participating in the process of HHG.
The terms in which ¢ = p, i.e., the pairs of identical
harmonic photons created or annihilated, correspond to a
single mode squeezing, and the terms with g # p corre-
spond to two-mode squeezing. It is known that those two-
mode squeezing terms are responsible for entanglement
between the two modes [18]. This further manifests that the
actual field state in the process of HHG is in general
entangled. In the particular case of HHG, where many
different field modes participate in the process, this two-
mode squeezing leads to massive entangled states. In view
of quantum information processing tasks with continuous

variable systems [19,20] the detection and characterization
of entanglement in continuous variable systems is of great
importance [33,34]. Taking into account that N modes
participate in the process of HHG, we expect the final field
state to exhibit genuine multipartite continuous variable
entanglement [35], and its detection is the subject of future
investigation.

Conclusions.—We have shown that the final field state in
the process of HHG is an entangled state between all field
modes and that each mode is squeezed. The onset of the
squeezing and its physical interpretation based on dipole
moment correlations is provided, as well as the explanation
of the complex valued squeezing parameter. It is shown that
the squeezing can be controlled by varying the CEP of the
driving field, which allows one to rotate the quadrature
operator along which the squeezing occurs. This establishes
the process of HHG as a new light source for bright
squeezed radiation. Showing that the field is entangled
provides further usefulness of the recently emerging con-
nection of attosecond physics with quantum information
science [2,3]. Especially the generation of a genuine
multipartite entangled continuous variable system is of
fundamental and technological importance. In conclusion,
we have uncovered previously unknown field properties in
the HHG process, and we anticipate that driving more
complex systems [36-38] or using nonclassical driving
fields [16,17,39] could lead to further insights into the
entanglement and squeezing properties of the generated
harmonic light. Finally, we note that the derivation of the
field state is generic, and that the dipole moment correla-
tions are the constitutive components for the field entan-
glement and squeezing. Going beyond strong field
dynamics in simple targets may provide novel light sources
with unexpected properties.
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