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Fractonic constraints can lead to exotic properties of quantum many-body systems. Here, we investigate
the dynamics of fracton excitations on top of the ground states of a one-dimensional, dipole-conserving
Bose-Hubbard model. We show that nearby fractons undergo a collective motion mediated by exchanging
virtual dipole excitations, which provides a powerful dynamical tool to characterize the underlying ground-
state phases. We find that, in the gapped Mott insulating phase, fractons are confined to each other as
motion requires the exchange of massive dipoles. When crossing the phase transition into a gapless
Luttinger liquid of dipoles, fractons deconfine. Their transient deconfinement dynamics scales diffusively
and exhibits strong but subleading contributions described by a quantum Lifshitz model. We examine
prospects for the experimental realization in tilted Bose-Hubbard chains by numerically simulating the
adiabatic state preparation and subsequent time evolution and find clear signatures of the low-energy
fracton dynamics.
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Introduction.—Fractonic systems, in which elementary
excitations exhibit restricted mobility, have attracted much
interest over recent years [1–8]. A prominent example are
systems that conserve higher multipole moments of a
global U(1) charge [9–12]. Such multipole conservation
laws drastically impact nonequilibrium properties, entailing
Hilbert space fragmentation [13–15], anomalous diffusion
[16–20], and a slowdown in the spread of information [21].
A promising approach to realize such phenomena in
experimental setups is the preparation of ultracold atomic
gases in tilted optical lattices, whose effective behavior is
governed by dipole-conserving Bose- or Fermi-Hubbard
models. Experimental realizations of such systems have
demonstrated subdiffusive dynamics [22] as well as Hilbert
space fragmentation [23,24] for high-energy initial states.
At low energies, a duality between fractons and elasticity
theory indicates a wealth of possible ground-state phases
[25–31]. Recent theoretical work has explored such low-
energy properties in microscopic dipole-conserving lattice
models, establishing Mott insulating phases, Luttinger
liquids of dipoles, and supersolids [32–35]. However,
preparing and probing such low-energy states in exper-
imental setups remains a significant challenge.
In this work, we examine dynamical probes of fractonic

properties using few-fracton excitations on top of the
ground states of a dipole-conserving Bose-Hubbard model.
We investigate the collective motion of two initially nearby
fractons, mediated by virtual dipole excitations, and study
how their mobility depends on the underlying ground-state
phase (see also the setup discussed in Ref. [36]); see Fig. 1.
For the dipole Mott insulator with gapped dipole

excitations, fractons remain confined. By contrast, for
the gapless dipole Luttinger liquid, kinematic constraints
are eased and we analyze the resulting deconfining dynam-
ics both numerically and analytically. Furthermore, a
numerical simulation of adiabatic state preparation dem-
onstrates how the confinement-deconfinement dynamics
may be realized with quantum simulators of ultracold
atoms in optical lattices. We argue that local dynamical
probes are crucial to confirm low-energy dipole-conserving
dynamics in lieu of static measurements.
Dipole-conserving Bose-Hubbard model.—We consider

a one-dimensional model of lattice bosons with a con-
strained hopping term [32–34] of the form

Ĥ ¼ −td
X
j

�
b̂†j b̂

2
jþ1b̂

†
jþ2 þ H:c:

�þU
2

X
j

n̂jðn̂j − 1Þ; ð1Þ

where td is the strength of the correlated hopping and U a
repulsive on-site interaction. This Hamiltonian conserves
both the total charge (or particle number) N̂ ¼ P

j n̂j and
the associated dipole moment (or center of mass)
P̂ ¼ P

j jn̂j. Because of the dipole constraint, single

charge excitations created by b̂†j act as mobility-restricted
fractons and can move only by emitting or absorbing a
mobile dipole excitation d̂†j ≡ b̂†j b̂jþ1; see Fig. 1(a). For a
theoretical description of Eq. (1) at low energies, it is
convenient to introduce a local dipole charge q̂d;j, defined

via q̂d;j ¼
Pj

l¼0ðn̂l − nÞ [20,34,37]. Here, n is the average
charge density, and we take n∈N to be integer throughout
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this work. Crucially, assuming a finite energy gap for single
charge excitations, the local dipole charge qd;j remains
bounded in the ground state of Eq. (1) [34]. A standard
bosonization procedure gives a counting fieldϕðxÞ and phase
field θðxÞ for the fractons, which satisfy ½∂xϕðxÞ; θðx0Þ� ¼
−iπδðx − x0Þ [38]. Considering the definition of the dipole
density q̂d;j, one can bosonize the dipole degrees of freedom
to find the relation between the fracton and the dipole fields
∂xϕdðxÞ ¼ ϕðxÞ and θdðxÞ ¼ −∂xθðxÞ leading to equivalent
commutation relations ½∂xϕdðxÞ; θdðx0Þ� ¼ −iπδðx − x0Þ (for
details, see Supplemental Material [39]). The effective low-
energy description of the system is then given by the sine-
Gordon model [33,34]

HSG ¼
Z

dx
2π

�
udKdð∂xθdÞ2 þ

ud
Kd

ð∂xϕdÞ2 þ g cosðϕdÞ
�
;

ð2Þ

with Luttinger parameter Kd and Luttinger velocity ud. For
Kd < 2, realized at small hopping td=U, the cosine is
relevant, pinning the counting field ϕdðxÞ and driving the
system into a Mott insulator of dipoles with finite mass gap.
At a critical hopping strength td=UjBKT, the systemundergoes
aBerezinskii-Kosterlitz-Thouless (BKT) transition atKd ¼ 2
as the cosine becomes irrelevant. The dipole gap closes and
the system enters a Luttinger liquid of dipoles:

HLL ¼ ud
2π

Z
dx

�
Kdð∂xθdÞ2 þ

1

Kd
ð∂xϕdÞ2

�
: ð3Þ

Previous numerical studies demonstrated that the lowest
integer filling at which a transition into this Luttinger liquid
occurs is n ¼ 2, with td=UjBKT ≈ 0.113 [34]. We, thus,
restrict to n ¼ 2 for the remainder of this work, operating
within the phase diagram shown in Fig. 1(b).
Two-fracton dynamics.—We consider the ground states

jΩi of the dipole-conserving Bose-Hubbard model Eq. (1)
and add two particles on adjacent sites jψ2Fi ¼ b̂†0b̂

†
1jΩi.

We note that jΩi ¼ jΩðtd=UÞi depends on the ratio td=U.
Time evolving jψ2Fi under Ĥ, the fractons can hop in
opposite directions by the exchange of virtual dipoles
acting as “force carriers,” reminiscent of mediated inter-
actions in gauge theories [35,36,52]; see Fig. 1(a). Our goal
is to determine the dependence of this dynamical process
on the underlying ground state.
We first discuss the Mott insulating phase. Deep in the

strong-coupling limit td=U ≪ 1, the ground state jΩi ≈
j222…i is close to the homogeneously filled state. The
dynamics then takes place in a degenerate subspace
spanned by the states jri≡ b̂†−rb̂

†
1þrjΩi, in which the left

(right) particle excitation is shifted r sites to the left (right)
from its original position. The initial state is given by
jψ2Fi ¼ jr ¼ 0i. The degeneracy of this subspace is sub-
sequently lifted by exchanging a single virtual dipole
carrying an energy cost ∝ U. In degenerate perturbation
theory, we obtain an effective Hamiltonian

Ĥ2F ¼ −
X
r≥0

Jrjrþ 1ihrj þ H:c:; ð4Þ

with a position-dependent hopping Jr ∝ t2d=U exp ð−r=ξÞ
that decays exponentially over a distance ξ determined by
the ratio td=U (for details, see Supplemental Material [39]).
The exponential suppression arises as the massive dipole
has to travel further to transmit the interaction, dynamically
confining the two fractons [36]. At very strong repulsion
td=U ≪ 1, only the states jr ¼ 0i and jr ¼ 1i contribute
significantly to the dynamics, leading to a periodic breath-
ing motion between these states. To substantiate this picture
of confinement on top of the Mott insulator, even away
from td=U ≪ 1, we perform matrix product state (MPS)
simulations for the model Eq. (1). We compute the micro-
scopic ground state jΩi, add two particles on sites 0 and 1,

(a)

(b)

(c)

FIG. 1. Deconfinement of two fractons. (a) Fractons in dipole-
moment-conserving systems move collaboratively by exchanging
dipoles [36]. (b) Time evolution of the excess density hn̂jðτÞ − ni
after adding two particles at adjacent sites on top of the ground
state at filling n ¼ 2. Deep in the dipole Mott insulator (left), the
confined particles follow a breathing motion. In the dipole
Luttinger liquid (right), they spread diffusively over accessible
timescales in accordancewith a semiclassical picture (dashed gray
line). (c) Time evolution of the local excess density hn̂0ðτÞ − ni on
a sitewhere a particlewas added. The excess density remains finite
for the Mott state but decays diffusively in the Luttinger liquid.
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and evaluate the time-evolved local excess densities
hn̂jðτÞ − ni≡ hψ2FjeiĤτn̂je−iĤτjψ2Fi − n. Throughout the
Mott insulator, the excess density hn̂0ðτÞ − ni at the initial
position of a fracton excitation retains a finite long-time
value, in agreement with confinement; see Fig. 1(c), blue
curves. At very small td=U, oscillations in hn̂0ðτÞ − ni
become apparent. The full spatiotemporal profile of
hn̂jðτÞ − ni shown in Fig. 1(b), left panel, reveals that this
is indeed due to the breathing motion of the confined
fractons.
Moving across the phase transition into the dipole

Luttinger liquid, the gap of the dipole exchange particles
closes, lifting the exponential suppression of the correlated
hopping. We thus expect the two fractons to deconfine and
propagate apart. In a semiclassical picture, we assume that
the rate dr=dτ at which the distance r between the fractons
increases is determined by the time r=ud it takes a dipole at
velocity ud to travel between them, i.e., ðdr=dτÞ ∝ r−1.
This leads to a diffusive space-time scaling r ∝

ffiffiffi
τ

p
. We

observe dynamics consistent with this semiclassical
description on numerically accessible timescales in the
diffusive decay of hn̂0ðτÞ − ni ∼ 1=

ffiffiffi
τ

p
throughout the

Luttinger liquid; see Fig. 1(c), red curves. This diffusive
transport is reflected in the full profile of the excess density
hn̂jðτÞ − ni, which in the center of the system broadens asffiffiffi
τ

p
; see Fig. 1(b), right panel. However, intriguingly,

hn̂jðτÞ − ni further exhibits strong oscillations beyond this
feature, spreading behind a ballistically moving light cone
and bending in a seemingly diffusive fashion. In order to
explain the origin of this feature, we will examine the
dynamics of local dipole excitations in the following.
Local dipole excitation.—In addition to fracton excita-

tions, we can directly study the “force-carrying” dipole
excitations by considering the initial state jψDi ¼ b̂†0b̂1jΩi.
Deep in the Mott insulator, the effective Hamiltonian
governing the dynamics of the dipole excitation corre-
sponds to a single particle nearest-neighbor hopping model
(see Ref. [39] for details). The dipole excitation, thus,
spreads ballistically. We confirm this numerically by
evaluating the time-evolved local dipole charges hq̂d;jðτÞi≡
hψDjeiĤτq̂d;je−iĤτjψDi; see Fig. 2(a).
Turning to the dipole Luttinger liquid, the low-energy

model Eq. (3) predicts two sharp sound modes in the dipole
charge hq̂d;jðτÞi, moving right or left with velocity�ud and
yielding a dynamical exponent z ¼ 1. Our numerical
results indeed indicate the emergence of these sound modes
at the latest accessible times; see Fig. 2(b). The observed
dipole density is not inversion symmetric around the origin
of the excitation, since the Hamiltonian is not particle-hole
symmetric. However, similar to the two-fracton case dis-
cussed before, the finite-time dynamics is characterized by
additional, strongly oscillating contributions. This suggests
the following picture: While Eq. (3) provides the correct
asymptotic description for late times and low energies,

subleading corrections to Eq. (3) are important on acces-
sible, finite times.
In order to understand these corrections, we recall that

Eq. (3) provides the correct low-energy description of the
microscopic Hamiltonian Eq. (1) in the presence of a finite
gap for single charge excitations. Previous studies have
established a finite charge gap for all td=U [33,34].
However, in practice, this gap can become very small,
and at finite times the system appears as if charge
excitations were gapless. According to the fracton-dipole
field relations, the finite charge gap is due to the second
term ∼½∂xϕdðxÞ�2 ¼ ϕ2ðxÞ in Eq. (3). Assuming this term is
small, we drop it for the purpose of effectively describing
early-time dynamics. Including the next-to-leading-order
term ∼½∂2xϕdðxÞ�2 then gives rise to a quantum Lifshitz
model [32,53,54]:

HLif ¼
v
2π

Z
dx

�
Kð∂xθdÞ2 þ

1

K
ð∂2xϕdÞ2

�
; ð5Þ

which we express in dipole degrees of freedom and where
the parameters v and K are named in analogy to the
Hamiltonian (3). The energy spectrum follows a quadratic
relation ω ∝ k2 and induces a dynamical exponent z ¼ 2.
A recent numerical study of the dipole spectral function in
the Luttinger liquid indeed confirmed a quadratic
dispersion at higher energies [55]. We discuss the relation
between the two field theories Eqs. (3) and (5) in detail in
Supplemental Material [39]. Using Eq. (5) as an

(a)

(b)

FIG. 2. Dynamics of a dipole. Time evolution of an additional
dipole on top of the n ¼ 2 ground state. Left column: dipole
charge hq̂j;dðτÞi. Right column: rescaled dipole density cuts at
several times. (a) A dipole excitation on top of the Mott insulator
expands ballistically and is effectively described by a single free
particle (black line, evaluated at tdτ ¼ 4). (b) A dipole excitation
in the Luttinger liquid exhibits pronounced diffusive waves at
early times, obeying the Lifshitz scaling relation Eq. (6) (black
line). The late-time dynamics are eventually dominated by the
ballistic Luttinger modes (dashed lines).
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approximation for early times, we evaluate the time-
evolved dipole charge in closed form:

hq̂d;jðτÞi ∝
(
δðjÞ; τ ¼ 0

1
2
ffiffiffiffi
vτ

p
	
cos

� j2

4vτ

�þ sin
� j2

4vτ

�

; else:

ð6Þ

This oscillating function follows a diffusive scaling as
expected from the dynamical exponent z ¼ 2.
This expression violates Lieb-Robinson bounds on

information spreading; however, causal behavior is restored
by a high-momentum cutoff Λ ¼ Oð1=aÞ, which in a
lattice system is naturally set by the lattice spacing a.
The cutoff induces a light cone with finite velocity that
approximately corresponds to the group velocity of the
quadratic Lifshitz dispersion at the momentum cutoff,
∂kωðkÞjΛ ¼ 2vΛ.
Our numerical results for the early-time dipole dynamics

agree remarkably well with the scaling relation predicted
by the Lifshitz theory; see Fig. 2(b), right column. Also
indicated is the Luttinger velocity, extracted from ground-
state numerics of the Luttinger parameter Kd and the dipole
compressibility κd using the relation κd ¼ Kd=udπ [34],
which is slow compared to the diffusive Lifshitz oscilla-
tions. These oscillations are inherited in the two-fracton
case discussed previously and constitute a process distinct
from the virtual dipole exchange between fractons.
Experimental realization: Tilted lattices.—Having estab-

lished the dynamics of few-fracton initial states as char-
acteristic signatures of the underlying dipole Mott insulator
and Luttinger liquid phases, we now turn to the question of
how to realize these phases and their dynamical signatures
in experiments. An accessible platform to implement
dipole-conserving dynamics are ultracold gases of atoms
in an optical lattice with a strong tilt. The Hamiltonian of
such a system is given by

Ĥ¼−t
X
j

�
b̂†j b̂jþ1þH:c:

�þU
2

X
j

n̂jðn̂j−1ÞþΔ
X
j

jn̂j;

ð7Þ

where Δ is the strength of the tilt. In the limit of strong
Δ ≫ t, U, only correlated processes that conserve the total
dipole moment are energetically allowed. A Schrieffer-
Wolff transformation yields the dipole-conserving
Hamiltonian (1) with effective correlated hopping td;eff ¼
t2U=Δ2 and a renormalized Ueff ¼ Uð1 − 4t2=Δ2Þ, along-
side a nearest-neighbor interaction of strength 2t2U=Δ2

[14,23,24,56]; see Supplemental Material [39] for the full
derivation.
The first step is to prepare low-energy states within

sectors of fixed dipole moment at integer filling. We
propose the following protocol: (i) Initialize the system
in a homogeneous state j222…i at integer filling at
vanishing hopping t ¼ 0 and zero tilt Δ ¼ 0. (ii) The tilt

is then ramped up quickly to a value Δ, leaving the state
invariant. This realizes the ground state of the dipole Mott
insulator in the limit of vanishing correlated hopping,
td;eff ¼ 0. (iii) Next, the depth of the optical lattice is
lowered adiabatically, increasing t (and, thus, td;eff ) until
the desired point in the phase diagram is reached; see
Fig. 3(a). This results in a state jΩ̃i that depends on the final
values t, Δ, and U of hopping, tilt, and interactions, as well
as the specific adiabatic ramp. (iv) Finally, additional
particles on top of jΩ̃i may be introduced to create the
state jψ̃2Fi ¼ b̂†0b̂

†
1jΩ̃i, for example, using optical tweezers;

see, e.g., Refs. [57–59]. Other excitations may be probed as
well: Using digital micromirror devices, tunneling between
neighboring sites can be induced to access a single-dipole
state jψ̃Di ¼ b̂†0b̂1jΩ̃i. One can also dope holes in a similar

(a)

(c)

(b)

FIG. 3. Fractonic dynamics in a tilted lattice. (a) Sequence for
adiabatic preparation of ground states with a two-particle ex-
citation. After a rapid ramp of the tilt Δ, the hopping strength is
slowly increased to a finite value t. Subsequently, additional
particles are introduced for example by optical tweezer potentials.
(b) Density profile of the two-particle state for weak (left) and
strong (right) final hopping strength. Weak hopping results in the
predicted breathing motion. For strong hopping, Lifshitz-like
oscillations emerge, with an approximately diffusive scaling.
Inversion symmetry is explicitly broken due to the linear
potential. (c) Time evolution of dipole moment fluctuations in
a segment of size l ¼ 80 after preparing the excitations on top of
an n ¼ 2 state. The dipole fluctuations in the tilted lattice do not
increase over a significant period of time, suggesting dipole-
conserving dynamics (green lines). By contrast, fluctuations on
top of a conventional (untilted) n ¼ 1 Mott state increase
quadratically (gray lines). Fluctuations of adiabatically prepared
ground states are subtracted in both cases.
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vein; as we can expect hole dynamics over a sufficiently
high-filling background to resemble that of particle exci-
tations, this strategy can likewise be used to study single-
and few-fracton states.
To demonstrate this protocol, we numerically simulate

the adiabatic preparation of jΩ̃i and the subsequent
dynamics from the two-particle excitation state jψ̃2Fi using
MPSmethods. For a given final value t of the single particle
hopping, we set U ¼ 0.5t and allocate a time τt ¼ 20 for a
linear adiabatic ramp; see Fig. 3(a). We show the dynamics
of the excess charge hn̂jðτÞ − ni from the two-particle state
jψ̃2Fi in Fig. 3(b). For weak hopping,Δ=t ¼ 5, the fractons
remain confined with clear signatures of breathing dynam-
ics, distinct from the much faster Bloch oscillations
induced by the linear potential. In contrast, for larger final
hopping, Δ=t ¼ 3.5, we observe dynamical deconfinement
of the fractons. The spread of the excess density hn̂jðτÞ − ni
scales approximately diffusively, with strong oscillations
reminiscent of the scaling function (6). This suggests that
the dynamical properties of the dipole Luttinger liquid—
including strong subleading contributions from a quantum
Lifshitz model—are well captured in this setup.
It remains to verify that the observed diffusive charge

dynamics is indeed dipole conserving. For this purpose, we
define the dipole moment P̂l ¼ Pl

j¼1 q̂d;j−l=2 in a large
linear segment of size l around position j ¼ 0. In experi-
ment, P̂l can be measured from snapshots using quantum
gas microscopes [60,61]. We then consider fluctuations of
the time-evolved dipole moment P̂lðτÞ, which we label as

ðΔPð2FÞ
l ðτÞÞ2 for the initial state jψ̃2Fi and ðΔPðΩÞ

l ðτÞÞ2 for
jΩ̃i. We note that the latter are nontrivial, since jΩ̃i is not a
true eigenstate. The difference ðΔPlðτÞÞ2 ≡ ðΔPð2FÞ

l ðτÞÞ2−
ðΔPðΩÞ

l ðτÞÞ2 then quantifies the fluctuation of the dipole
moment due to dynamics of charge excitations. We numeri-
cally evaluate the dynamics of ðΔPlðτÞÞ2 for a segment of
l ¼ 80 and for different tilt-to-hopping ratios Δ=t; see
Fig. 3(c) (green lines). The fluctuations do not increase,
confirming effective dipole conservation on a prethermal
timescale. By contrast, the dipole fluctuations from two
charge excitations on top of a regular n ¼ 1 Mott insulator
with vanishing tilt Δ ¼ 0 increase rapidly (gray lines). In
this case, we predict that the free ballistic movement of the
particles leads to ðΔPlðτÞÞ2 ∼ τ2 at late times, consistent
with our numerical results.
Finally, one may be tempted to probe the static fluctua-

tions ðΔPðΩÞ
l Þ2 of the state jΩ̃i directly: For the ground

states of the model Eq. (1) with exact dipole conservation,

these fluctuations scale with l as ðΔPðdMIÞ
l Þ2 ∼ const in the

dipole Mott insulator and ðΔPðdLLÞ
l Þ2 ∼ logðlÞ in the dipole

Luttinger liquid (analogous to particle number fluctuations
in a regular Mott state or Luttinger liquid [62–64]). By
contrast, in a regular Mott insulator without dipole

conservation, a finite density of particle-hole fluctuations

leads to ðΔPðMIÞ
l Þ2 ∼ l, providing a clear distinction to

dipole-conserving states. Crucially, however, the tilted
model Eq. (7) enforces dipole conservation in a rotated
basis given by a Schrieffer-Wolff transformation. Since
measurements are taken in the standard occupation number

basis, this mismatch leads to ðΔPðΩÞ
l Þ2 ∼ l despite effective

dipole conservation because of the “wrong” measure-
ment basis.
Conclusions and outlook.—We have studied the dynam-

ics of local excitations on top of the integer-filling ground
states of the dipolar Bose-Hubbard model. Fractons under-
go a confinement-deconfinement transition when tuning
the initial state from a dipole Mott insulator to a dipole
Luttinger liquid. Future work may be dedicated to devel-
oping an effective theory of the collective fracton motion
and to elucidating its eventual asymptotic late-time behav-
ior. Moreover, it would be interesting to explore the
consequences of a modified Mermin-Wagner theorem for
our protocols in higher-dimensional dipole-moment-
conserving systems [32,65,66].
We have furthermore studied the adiabatic preparation

and subsequent dynamics of the two-fracton state in a tilted
optical lattice setup, identifying dynamical probes as
crucial tools to observe fractonic properties at low energies.
Our results present clear strategies to realize and probe
fractonic low-energy phases. Future studies may explore
noninteger commensurate fillings which realize metastable
supersolids [33,34]. Quasi-two-dimensional gases of polar
molecules may offer alternative routes to study fracton
deconfinement dynamics, as those systems are effectively
described by the elasticity theory of two-dimensional
quantum crystals, and, in fact, supersolid phases have
already been demonstrated experimentally [67].

Numerical data and simulation codes are available on
Zenodo upon reasonable request [68].
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