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I demonstrate how chiral fermions with an exact gauge symmetry can appear on the d-dimensional
boundary of a finite volume (dþ 1)-dimensional manifold, without any light mirror partners. The condition
for the d-dimensional boundary theory to be local is that gauge anomalies cancel and that the volume be
large. This can likely be achieved on a lattice and provides a new paradigm for the lattice regularization of
chiral gauge theories.
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If understanding a theory means that one can reliably
compute consequences of it, then we do not understand the
standard model—despite tremendous agreement between
experimental data and calculations to low orders in per-
turbation theory in the weak interactions. That is because
there does not exist a nonperturbative regulator for chiral
gauge theories, such as the standard model, due to the
tension in quantum field theory between chiral symmetry
and the need to tame UV divergences. Regulating a
quantum field theory requires introduction of a UV mass
scale, which typically breaks chiral symmetry. This tension
has physical consequences in the form of anomalies, but it
also places an obstacle to defining chiral gauge theories,
where violating chiral symmetry entails breaking gauge
invariance.
The tension between chiral symmetry and regularization

applies equally to continuum and lattice approaches [1,2].
Domain wall fermions were introduced to solve the
problem of realizing chiral symmetry on the lattice by
exploiting the fact that in infinite volume, massless fermion
modes must exist on the spatial boundary between two
topologically distinct phases [3–5]. Such phases can be
realized by Wilson fermions, depending on the ratio of the
fermion mass to the Wilson coupling (the coefficient of
ψ̄∂2ψ) [5]. A natural consequence of this lattice construc-
tion is being able to correctly account for the anomalous
divergences of global chiral currents and explicitly observe
them [6]. For actual computations on a finite lattice, the
topological phase boundaries can be approximately real-
ized as the two edges of a finite five-dimensional lattice [7].
Our 4D world then consists of the two disconnected
boundaries of a 5D slab with chiral modes of opposite

chirality bound to the two surfaces, with 4D gauge fields
independent of the extra dimension. This gives a light Dirac
fermion with a mass that vanishes exponentially fast with
the extent of the extra dimension. In the limit of an infinite
extra dimension, chiral symmetry is restored (up to
anomalies), and the massless chiral modes can be described
by the overlap operator on a finite four-dimensional lattice,
without reference to the gapped modes in the bulk [8–12].
In turn, the overlap operator solves the Ginsparg-Wilson
equation [13], which implies the existence of exact chiral
“Lüscher” symmetries of the lattice action that give rise to
the appropriate anomalous transformation of the lattice
integration measure [14].
The domain wall and overlap constructions have led to a

complete solution to the problem of constructing vectorlike
gauge theories with global chiral symmetries, but do not
directly lead to a regulator for lattice chiral gauge theory.
This is because for every Weyl fermion on one boundary,
there is a mirror fermion with opposite chirality on the other
boundary, so the overall theory is vectorlike. There have
been numerous attempts to find a lattice regularization of a
chiral gauge theory, using domain wall or overlap fermions
as a starting point, or by other approaches [15].
Here, I present an alternative, that a d-dimensional chiral

gauge theory can be realized as the boundary theory of a
quantum field theory constructed on a finite (dþ 1)-
dimensional manifold that has only a single, connected
boundary. With the manifold having only a single boun-
dary, there are no mirror fermions. I conclude that it is
precisely the gauge anomaly cancellation condition that
allows this system to behave as a local d-dimensional chiral
gauge theory in the IR, and that there is no obvious
obstruction to simulating such a system nonperturbatively
on a lattice—although there remain unanswered questions
(see Ref. [31] for related work).
Consider a free massive Dirac fermion on the manifold

Y ¼ Md−1 × R2 with Euclidian signature. The Md−1 mani-
fold is described by the d − 1 coordinates x⊥, while the R2
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submanifold is described by Cartesian coordinates fx; yg or
polar coordinates fr; θg. The fermion mass is taken to
equal m for r < R and −M for r > R, with both m and M
real and positive. I will eventually takeM → ∞, which will
allow ignoring the region r > R, in which case Y ¼
Md−1 × D̄R, where D̄R is the closed disk of radius R,
and the boundary of Y isMd−1 × S1, which will serve as our
d-dimensional spacetime. I take d to be even and the
fermions to be Dirac, but the analysis can be generalized to
include Majorana fermions and edge states in odd space-
time dimensions, such as recently discussed in Ref. [32].
The fermion action may be written as

S ¼
Z

dx⊥
Z

rdr dθ ψ̄ð∂⊥ þDÞψ ; ð1Þ

where ∂⊥ ¼ γ⃗⊥ ∂
!

⊥ is the Dirac operator on Md−1 and

D ¼ γx∂x þ γy∂y þmðrÞ

¼ γr

�
∂r þ

1

2r

�
þ i
r
γθJ þmðrÞ; ð2Þ

where

γr ¼ cos θγx þ sin θγy; γθ ¼ − sin θγx þ cos θγy; ð3Þ

and J is the angular momentum operator

J ¼ −i∂θ þ
1

2
Σ; Σ ¼ −

i
2
½γx; γy�: ð4Þ

SinceD is not Hermitian it is convenient to expand ψ and ψ̄
in the functions fn and bn, respectively, which satisfy

Dfn ¼ μnbn; D̄bn ¼ μ�nfn; ð5Þ

where

D̄¼ 1

r
D†r¼ −γr

�
∂r þ

1

2r

�
−
i
r
γθJ þmðrÞ ¼ ΣDΣ ð6Þ

is the adjoint ofDwith respect to the integration measure in
polar coordinates. As f, b are eigenstates of the self-adjoint
operators D̄D andDD̄, respectively, they each can be taken
to be a complete orthonormal basis. The magnitude of μn
may be found by solving the eigenvalue equation

D̄Dfn ¼ jμnj2fn; ð7Þ

and the phase of μn, can be conveniently fixed by choosing

bn ¼ Σfn: ð8Þ

Only solutions with low lying eigenvalues jμj < m corre-
spond to boundary states.

The cylindrical symmetry of the problem can be
exploited by taking f and b to be eigenstates of the angular
momentum operator J , which commutes with both D and
D̄ and has eigenvalues j ¼ � 1

2
;� 3

2
;…. Therefore a

convenient basis to work in is one where the spin Σ is
diagonal, such as

γ⃗⊥ ¼ σ3 ⊗ Γ⃗; γx ¼ σ1 ⊗ 1; γy ¼ σ2 ⊗ 1; ð9Þ

Σ ¼ −
i
2
½γx; γy� ¼ σ3 ⊗ 1; ð10Þ

where Γ⃗ are the 2d=2−1 × 2d=2−1 Dirac matrices in (d − 1)
dimensions (for example, Γ⃗ ¼ 1 for d ¼ 2, and Γ⃗ ¼ σ⃗ for
d ¼ 4). In polar coordinates one has

γr ¼
�

0 e−iθ

eiθ 0

�
; γθ ¼

�
0 −ie−iθ

ieiθ 0

�
ð11Þ

while Σ is unchanged.
The fields ψ and ψ̄ can now be expanded as

ψαi ¼
X
n

fn;iðr; θÞχn;αðx⊥Þ

ψ̄αi ¼
X
n

χ̄n;αðx⊥Þb†n;iðr; θÞ; ð12Þ

where the spinor index i ¼ 1, 2 is acted on by the first block
in our direct product notation for the Dirac matrices, the
α ¼ 1;…; 2d=2−1 indices are acted on by the second block,
and the χn;αðx⊥Þ are 2d=2−1-component spinors. Given the
relations

Dfn ¼ μnbn; b†n∂⊥ ¼ f†nΣ∂⊥ ¼ f†nð1⊗ Γ⃗Þ · ∂!⊥; ð13Þ
it follows that the action in Eq. (1) can be then be rewritten
as the sum of an infinite tower of fermions propagating
on Md−1:

S ¼
Z

dx⊥
X
n

χ̄n
�
Γ⃗ · ∂

!
⊥ þ μn

�
χn: ð14Þ

The unnormalized solutions to Eq. (5) for the boundary
modes on the disk (r ≤ R) in theM → ∞ limit are given by

fjðrÞ ¼

0
B@ eiðj−1=2Þθ Ijj−1=2jðκjrÞ

Ijj−1=2jðκjRÞ

−eiðjþ1=2Þθ Ijjþ1=2jðκjrÞ
Ijjþ1=2jðκjRÞ

1
CA;

bjðrÞ ¼

0
B@ eiðj−1=2Þθ Ijj−1=2jðκjrÞ

Ijj−1=2jðκjRÞ

eiðjþ1=2Þθ Ijjþ1=2jðκjrÞ
Ijjþ1=2jðκjRÞ

1
CA; ð15Þ

where IνðzÞ is a modified Bessel function,

κj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − jμjj2

q
, and μj solves the implicit eigenvalue

condition
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μj ¼ m − κj
Ijj−1=2jðκjRÞ
Ijjþ1=2jðκjRÞ

: ð16Þ

In the limit M → ∞ one finds that the f and b solutions
obey chiral boundary conditions at the edge of the disk,

1þ γr
2

fjðRÞ ¼
1 − γr
2

bjðRÞ ¼ 0; ð17Þ

with γr playing the role of γ5. in addition to the surface
mode solutions there are less interesting bulk excitations
labeled by a radial excitation quantum number as well as j.
The eigenvalue equation Eq. (16) can be solved explic-

itly in an expansion in inverse powers ofmR, with the result

μj ¼ −
j
R

�
1þ 1

2mR
þ 1

2m2R2
þ 3

4m3R3
þ 3

2m4R4

�

þ j3

R

�
1

4m4R4

�
þOððmRÞ−5Þ; ð18Þ

which is valid for either sign of j.
To interpret the boundary mode action given in Eq. (14)

with the above expression for μj, compare with the Dirac
operator in d dimensions in a chiral basis for the γ matrices,

γ⃗⊥ ¼ σ1 ⊗ Γ⃗; γk ¼ σ2 ⊗ 1; γχ ¼ σ3 ⊗ 1; ð19Þ

∂ ¼
�

0 Γ⃗ · ∂⃗⊥ − i∂k

Γ⃗ · ∂⃗⊥ þ i∂k 0

�
; ð20Þ

where ∂
!

⊥ is the gradient in the (d − 1) dimensions and
∂k ¼ ∂=∂xd. The upper right and lower left blocks of this
matrix can be identified as the fermion operators for the
left- and right-handed Weyl components of the Dirac
fermion, respectively. If one were to compactify the dth
dimension to a circle of radius R and Fourier transform with
respect to xd, one would make the replacement −i∂k → j=R
in the above matrix, where j takes integer values for
periodic boundary conditions, and half integer values for
antiperiodic. Comparing this result with the fermion
operator in Eq. (14), along with the expansion of μ in
Eq. (18), one sees that the edge state can be identified with
a right-handed Weyl fermion on a circle with antiperiodic
boundary conditions, its linear momentum proportional
to j. The opposite chirality would result if we reversed the
signs of the masses m and M. The corrections in powers of
1=ðmRÞ in Eq. (18) are due to the finite, j-dependent extent
of the boundary state wave functions into the bulk a
distance Oð1=mÞ. To order 1=ðmRÞ3 they are just renorm-
alizing the value of R that appears in the j=R expression.
The j3 contribution at O½ðmRÞ−4� corresponds to an
irrelevant three-derivative contribution to the kinetic term
of theWeyl fermion, which does not violate chirality. While

the j3 term corresponds to an irrelevant operator, its
appearance suggests that the dispersion relation could
become nonanalytic in j for j ≳mR. Indeed, that appears
to be the case: a graphical solution of Eq. (16) shows two
eigenvalues merging and going into the complex plane for j
roughly equal to mR.
The result that an exactly chiral mode exists on the

d-dimensional boundary of a finite (dþ 1)-dimensional
manifold may seem counterintuitive. If one were to
elongate the disk, the system would look similar to the
traditional system with a wall and antiwall that supports a
right-handed edge state on one side, a left-handed one on
the other, and an exponentially small but nonzero mass
term from the overlap of their wave functions. The reason
why one does not find opposite chiralities on opposite sides
of the disk is because while γ5 is a constant matrix for the
wall plus antiwall system, its analog for the disk is γr in
Eq. (11), which is θ-dependent, changing sign from one
side of the disk to the other, explaining how modes on
opposite sides can have the same chirality. The exponen-
tially small interaction between the two modes on opposite
sides of the finite disk can be seen by analytically
continuing the eigenvalue equation Eq. (16) to j ¼ 0

from either the j ≥ 1
2

or j ≤ − 1
2

side and finding
μ∼ ∓ 2m expð−2mRÞ; in this case, however, such an
interaction does not flip chirality, but instead represents
a nonlocality from the d-dimensional perspective, which
vanishes in the large mR limit. One should expect a
corresponding nonanalyticity in the edge state dispersion
relation for large j ∼mR. It is unclear whether the fact that
the nonlocality is exponentially small in R renders it
innocuous.
I now turn to the question of gauging the theory. The

(dþ 1)-dimensional theory with N copies of massive Dirac
fermions possesses a global UðNÞ symmetry, any subgroup
of which can be gauged in a straightforward way with a
well-defined integration measure for the path integral, once
a regulator is included. However, if one wants to describe a
d-dimensional chiral gauge theory on the boundary, and not
a theory of d-dimensional surface modes interacting with
(dþ 1)-dimensional gauge fields, one must find a way for
the gauge fields in the bulk to be completely determined by
their values on the surface, and not have independent bulk
degrees of freedom. Therefore one must define a gauge
field Bμ over the whole disk in such a way that it only
depends on the gauge field’s boundary value,

Bμðx⊥; r; θÞ
		
r¼R ¼ Aμðx⊥; θÞ; ð21Þ

where Aμ is the field being integrated over in the path
integral, subject to the usual measure e−SYM, where SYM is
the d-dimensional Yang-Mills action.
The role of gauge anomalies in defining a d-dimensional

chiral gauge theory on the boundary is clarified using
anomaly in-flow arguments [33]. When integrating out the
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regulated bulk modes in perturbation theory, the Chern-
Simons operator involving Bμ is the only relevant operator
that will be generated. With the Bμ fields being nonlocal
functionals of the Aμ gauge fields at the boundary, the
existence of the Chern-Simons operator will in general
preclude interpreting the theory of the edge states as being a
local d-dimensional gauge theory. However, the exception
is when the coefficient of the Chern-Simons operator
vanishes, which occurs precisely when the boundary theory
is free of perturbative anomalies. Therefore, the conclusion
is that when the Bμ fields are introduced and their boundary
values Aμ are integrated over, the theory in the continuum
will have a local d-dimensional description if and only if
the perturbative gauge anomalies cancel. This argument is
extended to nonperturbative anomalies and made more
precise in Ref. [34]. That paper shows that the fermion
determinant for the regulated system with a chiral fermion
on the boundary takes the form

ffiffiffiffiffiffiffiffiffiffiffi
detD

p
expð−iπη½B�Þ,

where detD is the determinant of the massless Dirac
operator, and η is the η invariant, the gauge invariant
sum of signs of the eigenvalues of the bulk Dirac operator
subject to generalized Atiyah-Singer-Patodi boundary con-
ditions (which are defined so that the Dirac operator is self-
adjoint) in the presence of the Bμ gauge field. The η
invariant is perturbatively equivalent to the Chern-Simons
operator, but contains additional information about non-
perturbative anomalies. When the edge theory is anomaly-
free η½Bμ� is independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aμ.
For practical applications one needs a concrete proposal

for how to continue the gauge fields into the bulk. One
possible definition, considered previously in Refs. [35,36]
for related reasons, is to have Bμ be the solution to the
Euclidian equations of motion subject to the boundary
condition Eq. (21). This is referred to as gradient flow, and
has been widely used for unrelated applications [37,38]. If
the boundary gauge fields Aμ are smooth compared to m−1,
this prescription ensures that the bulk fields Bμ will not
change appreciably with respect to r in the vicinity of the
boundary, fulfilling the assumption of Ref. [34]. While
gradient flow ensures that certain boundary gauge field
configurations Aμ will lead to singularities in the bulk
gauge field Bμ, these will be far from the boundary.
Finally, one must consider whether the theory can be

realized on the lattice. Since the continuum chiral edge
states arise at the boundary between two topological
phases, and similar topological phases are known to exist
for Wilson fermions on the lattice [4,5], there is no obvious
obstacle for realizing the disk construction on the lattice.
One would apply the same open boundary conditions
discussed in [7,39]. A recent lattice study of free Wilson
fermions on a finite lattice with a single boundary corrob-
orates the existence of a continuum Weyl fermion mode

without any mirror partner [40]. Such a spectrum would
seem to violate the Nielsen-Ninomiya theorem and one of
the assumptions going into that theorem must not apply.
Since chiral symmetry and fermion number are synony-
mous for a Weyl fermion, and the underlying fermion
number symmetry is exact for Wilson fermions, there is no
violation of chiral symmetry, and hence it must be that one
of the other assumptions is being violated. In fact, we have
seen that the locality assumption underlying the Nielsen-
Ninomiya theorem is violated due to the exponentially
small interaction between fermions on opposite sides of the
disk. For traditional domain wall fermions there were
convincing effective field theory arguments for why global
chiral symmetry became restored in the limit of infinite
domain wall separation, but a precise understanding of
chirality in this system was not possible until the overlap
description of the edge states was discovered and it was
shown to obey the Ginsparg-Wilson equation [8]. It is
reasonable to wonder whether related reasoning can shed
more light on how locality is realized in the model
presented here.
Generically one can expect a sign problem that persists

in the continuum limit when simulating a chiral gauge
theory, but it is unknown how severe it will be. Perhaps one
of the first applications of the idea should be the simulation
of a Dirac edge state, where a sign problem does not exist in
the continuum. This would allow numerical exploration of
potential nonlocality problems, as well as the expected
dependence on solely the boundary values of the gauge
fields.
This model gives reason for optimism that one can

finally achieve a meaningful nonperturbative definition of
chiral gauge theories such as the standard model. It can also
be generalized to consider edge states in odd spacetime
dimensions, as well as Majorana edge states. It is hoped
that this formulation will allow chiral gauge theories to be
simulated on a quantum computer some day in order to
overcome the sign problems and explore the rich phenom-
enology expected from them.
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