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We report the explicit solution for the vacuum state of the two-dimensional SUðNÞ principal chiral model
at large N for an arbitrary set of chemical potentials and any interaction strength, a unique result of such
kind for an asymptotically free quantum field theory. The solution matches one-loop perturbative
calculation at weak coupling, and in the opposite strong-coupling regime exhibits an emergent spacial
dimension from the continuum limit of the SUðNÞ Dynkin diagram.
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Introduction.—The principal chiral model (PCM) is a
remarkable representative of a large class of integrable
relativistic (1þ 1)-dimensional QFTs [1,2] possessing key
features of QCD: asymptotic freedom, mass-gap gener-
ation, and a nontrivial topological expansion in ’t Hooft’s
large-N limit. These features attracted considerable atten-
tion to the nonperturbative dynamics of PCM that has
been studied via the exact S matrix [2–4] and Bethe ansatz
[5–10] giving access to thermodynamics of the model [2].
While the S matrix is explicitly known for PCM [5], the
linear Bethe equations for the vacuum as a function of
chemical potentials or the nonlinear thermodynamic Bethe
ansatz equations are difficult to solve at any coupling
strength. They can be studied perturbatively [7] or numeri-
cally [8–10], but their analytic solution is beyond reach.
Fortunately, there is an exception: the large-N limit of the
vacuum Bethe equations is exactly solvable [11,12] for a
specific choice of external fields (chemical potentials of
conserved charges) repeating the mass spectrum profile in
their dependence on the SUðNÞ Dynkin label [13]. In this
Letter we lift this restriction and solve the model at large N

for any set of chemical potentials. It gives us the first exact
analytic solution for an asymptotically free theory at
general chemical potentials.
The FKW solution [11,12] obeys the semicircle law in

rapidity and can be systematically extended to higher
orders in 1=N; moreover, a double-scaling (DS) limit
combining large N with strong coupling resums all orders
of the 1=N expansion [15]. In this regime the Dynkin
labels give rise to a new emergent dimension in addition
to the 1þ 1 physical dimensions of space-time, as was
pointed out already in [11,12]. The DS limit presumably
describes a three-dimensional noncritical string theory,
by analogy to the c ¼ 1 matrix quantum mechanics [16]
whose DS limit [17–20] is dual to noncritical strings in two
dimensions [21–27].
We will report the solution for the vacuum state of large-

N PCM with arbitrary chemical potentials. The rapidity
dependence happens to be always semicircular with the
support ð−Ba; BaÞ varying along the Dynkin diagram. We
derived an integral equation for the limit shape BðαÞ
assuming its continuity. We then match the free energy
with the known one-loop result [7] at weak coupling. At
strong coupling, we observe the locality along the emergent
dimension for the small deviations from the first, Perron-
Frobenius (PF) mode of the external field. This may have
bearing on the currently unknown effective theory of the
dual three-dimensional string.
PCM with general chemical potentials at large N.—The

PCM is defined by the Lagrangian,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 132, 141602 (2024)
Editors' Suggestion

0031-9007=24=132(14)=141602(6) 141602-1 Published by the American Physical Society

https://orcid.org/0000-0003-0670-751X
https://orcid.org/0000-0003-1906-1359
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.141602&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1103/PhysRevLett.132.141602
https://doi.org/10.1103/PhysRevLett.132.141602
https://doi.org/10.1103/PhysRevLett.132.141602
https://doi.org/10.1103/PhysRevLett.132.141602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


S ¼ N
λ0

Z
d2xtrDμg†Dμg; ð1Þ

where the field gðxÞ∈SUðNÞ. The mass spectrum consists
of N − 1 particle species in the bifundamental representa-
tions of SUðNÞ × SUðNÞ. The lightest particle acquires its
mass by dimensional transmutation while others can be
seen as its bound states:

ma ¼ m
sin πa

N

sin π
N

; a ¼ 1…N − 1: ð2Þ

A finite density of particles is introduced by gauging the
SUðNÞ × SUðNÞ global symmetry by constant chemical
potentials: D0 ¼ ∂0g − ði=2ÞðHgþ gHÞ, D1 ¼ ∂1, where
H ¼ diagðq1;…; qNÞ is a traceless diagonal matrix with
the eigenvalues organized in the descending order: q1 ≥
q2 ≥ � � � ≥ qN . The chemical potential of the ath species,
transforming in the rank-a antisymmetric representation, is
then ha ¼

P
a
b¼1 qb (ordering of qa’s is important for this

conclusion). At large N we introduce a continuous coor-
dinate α ¼ πa=N ∈ ð0; πÞ and define the limit shape func-
tions qðαÞ ¼ qa and hðαÞ ¼ πha=N, smooth atN → ∞ and
related by h0ðαÞ ¼ qðαÞ. Trace and ordering conditions on
qa translate into the boundary conditions on hðαÞ:

hð0Þ ¼ 0 ¼ hðπÞ; h00ðαÞ < 0: ð3Þ

The Bethe equations for the ground state of PCM take
the form of integral equations for the pseudo-energies [11]:

εaðθÞ þ
XN−1

b¼1

Z
Bb

−Bb

dθRabðθ − θ0ÞεbðθÞ ¼ ha −ma cosh θ;

ð4Þ

which hold on the intervals ð−Ba; BaÞ where the pseudo-
energies are positive. The condition that they vanish at the
end points, εað�BaÞ ¼ 0, closes the system. Once the
pseudo-energies are known, the vacuum energy is obtained
by simple integration:

E ¼ −
XN−1

a¼1

ma

Z
Ba

−Ba

dθ
2π

εaðθÞ cosh θ: ð5Þ

The kernels of the integral equation originate from
scattering between particles in the Fermi sea and can be
extracted from the exact S matrix of PCM (their Fourier
transform is explicitly given in [11]):

RabðθÞ ¼ G

�
πðaþ bÞ

N
þ iθ

�
−G

�
πja− bj

N
þ iθ

�
þ c:c:;

ð6Þ

where

4π2GðxÞ ¼ ψ

�
x
2π

�
þ ψ

�
−

x
2π

�
−
2π

x
; ð7Þ

and ψðxÞ is the logarithmic derivative of the gamma
function.
Taking the large-N limit is now straightforward: the

Dynkin labels are promoted to continuous variables α
and β, while summation is replaced by integration. Quite
remarkably, the Dynkin coordinate and rapidity combine
into complex variables:

z ¼ αþ iθ; w ¼ β þ iθ0; ð8Þ

such that the kernel (6) becomes almost holomorphic:

Rðz; z̄;w; w̄Þ ¼ Gðzþ w̄Þ − 1

2
Gðz − wÞ − 1

2
Gðw − zÞ

þ signðα − βÞ
2πðz − wÞ þ c:c: ð9Þ

We remark here that for symmetric εðβ; θ0Þ ¼ εðβ;−θ0Þ the
first term Gðzþ w̄Þ is equivalent to Gðzþ wÞ and then the
first line becomes holomorphic in both variables, but this is
immaterial for our purposes: holomorphy in z alone will
suffice. More importantly, the second line breaks holomor-
phy explicitly, but just locally on the line α ¼ β. The sign
function originates from ja − bj in the kernel (6), before the
large-N limit jα − βj comes in multiples of π=N, and the
sign function should be smeared on the interval ð−ε; εÞ,
where ε is a proxy for π=N. At the end ε will just define the
contour deformation prescription.
Finally we get the Bethe equations in the two-

dimensional form:Z
D

d2wRðz; z̄;w; w̄Þεðw; w̄Þ ¼ hðαÞ −m
2
ðsin zþ sin z̄Þ;

ð10Þ

where integration is over a complex domain,

D ¼ �
αþ iθj0 < α < π;−BðαÞ < θ < BðαÞ�; ð11Þ

and the equation holds for z∈D.
Solution of Bethe equation.—Solution of the large-N

integral equation crucially relies on holomorphy of the
kernel. Every holomorphic function is harmonic, and thus,
applying the Laplacian ∂

2=∂z∂z̄ to both sides of (10) picks
only the anomalous term which moreover becomes local in
the Dynkin variable. At the end we get a singular integral
equation for each α:
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2

π

ZBðαÞ
−BðαÞ

dθ0
εðα; θ0Þ
ðθ − θ0Þ2 ¼ h00ðαÞ; ð12Þ

the solution of which is the famous semicircle law:

εðα; θÞ ¼ −
h00ðαÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðαÞ2 − θ2

q
: ð13Þ

Defining a function,

FðzÞ ¼
Z
D

d2w

�
2Gðzþ w̄Þ −Gðz − wÞ −Gðw − zÞ

þ signðα − βÞ
πðz − wÞ

�
εðw; w̄Þ − ih0ðαÞθ − hðαÞ; ð14Þ

we see that it will be holomorphic in D as soon as εðw; w̄Þ
satisfies the integral equation (12). This can be checked by
computing ∂F=∂z̄. On the other hand, by definition,

Z
D

d2wRðz; z̄;w; w̄Þεðw; w̄Þ ¼ FðzÞ
2

þ Fðz̄Þ
2

þ hðαÞ: ð15Þ

In virtue of this equation, (10) factorizes into holomorphic
and antiholomorphic parts and boils down to

FðzÞ ¼ −m sin z: ð16Þ

This functional condition can be used for fixing the profile
of the Fermi surface BðαÞ. We thus call it the shape
equation.
A useful form of the shape equation is obtained by

turning the branch cuts of the square root inside out, in
other words, replacing the short cut ½−BðαÞ; BðαÞ� passing
through zero by a long cut passing through infinity. The
resulting expression is manifestly analytic in D:

FðzÞ ¼
Zπ
0

dβ
2πi

h00ðβÞ sin β
Z∞
BðβÞ

dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − BðβÞ2

p
coshðξ − izÞ þ cos β

− ðz → −zÞ: ð17Þ

We mention in passing that transformation from short to
long cuts is well familiar in the theory of integrable
systems; for example, it is a crucial step in deriving the
quantum spectral curve for AdS=CFT [28,29]. Apart from
making holomorphy manifest, this representation reveals
the symmetries of the problem: written that way, FðzÞ is
manifestly 2π periodic and antisymmetric. A convenient
basis in the space of such functions is fsinpzjp∈Ng.
Expanding (16) and (17) in this basis and matching the
coefficients gives:

Zπ
0

dαh00ðαÞBðαÞK1(pBðαÞ) sinpα ¼ −
πm
2

δp1; ð18Þ

where K1 is the modified Bessel function. For the energy,
we get accordingly:

E ¼ N2m
4π2

Zπ
0

dα h00ðαÞBðαÞI1(BðαÞ) sin α: ð19Þ

These two equations completely characterize the ground
state of PCM at arbitrary chemical potentials.
If the chemical potentials repeat the mass spectrum,

with only the lowest PF mode present: hðαÞ ¼ h sin α, the
solution is constant: BðαÞ ¼ B. Indeed, the shape equa-
tions (18) with p ≥ 2 then follow from orthogonality of
sin kα with different k, and the shape equation for p ¼ 1
determines B:

BK1ðBÞ ¼
m
h
; E ¼ −

N2mh
8π

BI1ðBÞ; ð20Þ

recovering the results of [11,12]. At large chemical poten-
tial the theory is weakly coupled, and the Fermi rapidity
grows logarithmically:

B ≃h≫m
ln

h
m
þ 1

2
ln ln

h
m
þ 1

2
ln
π

2
þ � � � : ð21Þ

It can be shown to satisfy the two-loop renormalization
group equation and can thus be identified with the inverse
of the running coupling in a particular renormalization
scheme [11]:

4π

λðhÞ ¼ B: ð22Þ

The Fermi rapidity thus directly controls the interaction
strength. In the opposite, strong-coupling regime (small B),
we have [11]

B ≃h→m

ffiffiffiffiffiffiffiffiffiffiffiffi
4Δ

j lnΔj

s
; Δ ¼ h

m
− 1: ð23Þ

In general, the shape equations are an infinite set of
nonlinear integral conditions for a real function BðαÞ. These
equations can be solved numerically, as illustrated in Fig. 1,
however, deriving an analytic solution for a general profile
proves challenging. Therefore, our analysis is confined to
small perturbations around the constant solution.
Small fluctuations around PF mode.—Consider the

chemical potential of the form

hðαÞ ¼ h sin αþ
X∞
p¼2

hp sinpα; ð24Þ
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with small hp ≪ h. The Fermi surface will deviate little
from a constant: BðαÞ ¼ Bþ bðαÞ, and we may expand the
shape equations in b. To streamline this expansion we
introduce convenient notations.
For two functions on the interval ð0; πÞ we define a

pairing:

hfjgi ¼ −
2

π

Zπ
0

dαh00ðαÞfðαÞ�gðαÞ: ð25Þ

We also introduce two sets of functions:

hpj ¼ sinpα; jpi ¼ Up−1ðcos αÞ; ð26Þ

where Un are Chebyshev polynomials. Those are orthogo-
nal for the pure PF profile, while for a more general
profile (24)

hpjp0i ¼ hδpp0 þOðhkÞ: ð27Þ

TheOðhkÞ terms can be derived explicitly, but we will only
need these three:

h1jpi ¼ hpj1i ¼ p2hp; h1j1i ¼ h: ð28Þ

The shape equations and the energy are concisely
written as

hpjKðpBÞi ¼ mδp1; E ¼ −
N2m
8π

h1jIðBÞi; ð29Þ

where KðxÞ ¼ xK1ðxÞ and IðxÞ ¼ xI1ðxÞ.
It is now straightforward to expand the shape equations

around the constant solution:

Khpj1i þ pK0hpjbi þ 1

2
p2K00hpjb2i þ � � � ¼ mδp1: ð30Þ

If p ≥ 2, we may keep only the linear order:

hpjbi ¼ −
pK
K0 hp; ð31Þ

from which

bðαÞ ¼
X∞
p¼2

pK1ðpBÞ
hK0ðpBÞ

hpUp−1ðcos αÞ: ð32Þ

The constant (p ¼ 1) mode in bðαÞ appears at the quadratic
order and can be found from the p ¼ 1 equation because
the linear term there cancels identically and so it is valid
at Oðb2Þ:

h1jbi ¼ −
K00

2K0 h1jb2i: ð33Þ

For b appearing on the right-hand side, we can use the
linear approximation above.
Corrections to the energy are also quadratic:

E¼−
N2m
8π

�
Ih1j1iþI 0h1jbiþ 1

2
I 00h1jb2iþ � � �

�
: ð34Þ

Using (33) and plugging in the solution for b, we get

E¼−
N2m
8πh

�
BI1ðBÞh2þ

X∞
p¼2

p2K1ðpBÞ2
2K0ðBÞK0ðpBÞ2

h2p

�
: ð35Þ

This result is valid both at weak and strong coupling; the
only assumption used in its derivation is smallness of
deviations from the PF mode in hðαÞ.
Weak coupling.—At weak coupling (large B), we have

E ≃B≫1 −
N2

16π

�
Bh2 þ B

X
p

h2p þ
1

2

X
p

pðpþ 2Þh2p
�
: ð36Þ

This can be compared with the perturbative expression
known to the one-loop order [7] for generic chemical
potentials [30]:

E1-loop ¼ −
N2

2πλðhÞ
Z

dα qðαÞ2

−
N2

16π3

Z
dαdβ½qðαÞ − qðβÞ�2 ln 2jqðαÞ − qðβÞj

eh
;

ð37Þ

where qðαÞ ¼ h0ðαÞ and the running coupling is defined
by (22). Plugging in hðαÞ from (24) and expanding in hp to

FIG. 1. The semitransparent surface represents the large-N
pseudo-energy (13) with the profile BðαÞ computed from the
shape equation (18). For comparison we plot the numerical
solution of the exact integral equations (4) for N ¼ 7 (red lines)
and N ¼ 22 (black lines). The inset shows the chemical
potential hðαÞ.
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the quadratic order, we get the complete agreement with our
integrability-based result.
Strong coupling.—In the strong-coupling regime h

approaches m and B goes to zero, then

E ≃B≪1 −
N2

16π

�
B2h2 þ 1

B2j lnBj3
X
p

h2p

�
: ð38Þ

Quite remarkably, the energy becomes local along the
Dynkin dimension. Using (23), and denoting φðαÞ ¼
ðhðαÞ − h sin αÞ=ð4ΔÞ, we get

E ≃Δ→0 −
N2Δ

4πj lnΔj
�
m2 þ 1

j lnΔj
Z

dαφðαÞ2
�
: ð39Þ

Deviations from the PF mode are naturally of order Δ,
thus φ can be viewed as an order-one variable, albeit we had
linearized in fluctuations and thus neglected contributions
of higher than quadratic order in φ; moreover, one can show
that the very leading term will be the same for any small
profile BðαÞ. The fluctuations beyond the PF mode appear
to be logarithmically suppressed at strong coupling.
Perhaps the PF contribution should be regarded as a sub-
traction constant and the remainder could possibly be
interpreted in terms of an effective theory for fluctuations,
of which we calculated just the quadratic term.
Discussion.—We extended the exact solution of large-N

PCM [11,12] to the case of arbitrary chemical potentials.
The pseudo-energies of physical excitations still follow the
semicircular law but now the Fermi surface becomes a new
functional degree of freedom that has a nontrivial profile
along the Dynkin diagram. This plays the role of a new
continuous dimension emerging in the large-N limit. With
such new functional degrees of freedom at hand one can
model various weak-coupling regimes which may reveal
new types of nonperturbative trans-series expansions [31].
At strong coupling, intriguing signs of locality arise,
perhaps pointing toward string theory interpretation. It
would be interesting to split the Dynkin diagram into two
intervals and calculate entanglement entropy as a diag-
nostic for locality [32].
Similarly to our previous work [15], one can identify the

double-scaling limit in the case of general chemical
potentials; we will return to this point in the forthcoming
publication [33].
Another interesting direction would be to analyze the

large-N limit of PCM compactified on the cylinder with
twisted boundary conditions; the corresponding analysis at
finite N was already initiated in [10]. This corresponds to
the putative dual string at finite temperature. Also, it would
be interesting to go beyond the vacuum state and analyze
the excited states.
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