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We compute the complete set of two-loop master integrals for the scattering of four massless particles
and a massive one. Our results are ready for phenomenological applications, removing a major obstacle to
the computation of complete next-to-next-to-leading order QCD corrections to processes such as the
production of a H=Z=W boson in association with two jets at the LHC. Furthermore, they open the door to
new investigations into the structure of quantum-field theories and provide precious analytic data for
studying the mathematical properties of Feynman integrals.
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Feynman integrals play a central role in obtaining precise
predictions in quantum-field theory (QFT). They are also of
great mathematical interest, giving rise to noteworthy
classes of special functions. Advances in the calculation
of Feynman integrals have led to new insights into the
mathematical properties of these functions, as well as to
new results in formal studies of QFTs and (beyond)
standard-model phenomenology. While the calculation of
two-loop five-point Feynman integrals is an active area of
research [1–12], a complete set of integrals is only available
for massless particles [1–7]. In this Letter, we advance
the state of the art by computing all Feynman integrals
necessary to describe the scattering of four massless
particles and a massive one at two loops.
We obtain a representation for the Feynman integrals in

dimensional regularization that exhibits their analytic struc-
ture and allows for a stable and efficient numerical evalu-
ation. This is achieved by finding bases of pure integrals [13]
that satisfy differential equations (DEs) [14–18] in canonical
form [19], explicitly displaying all singularities of the
integrals. Despite recent progress [5,20–25], finding a pure

basis is still amajor bottleneck.We followed the approach of
Refs. [3,6], building on modular arithmetic to bypass
intermediate computational bottlenecks [26,27]. Using
Chen iterated integrals [28], we solve the DEs at each order
in the dimensional regulator in terms of a minimal set of
functions, called “(one-mass) pentagon functions.” We
demonstrate that this solution is efficient and numerically
stable over phase space and therefore ready for phenom-
enological application. A C++ library [29] for the evaluation
of the pentagon functionsmakes our results accessible to the
whole community. Previous approaches for constructing
such solutions [7,30–32] relied on the possibility of repre-
senting them through multiple polylogarithms [33], but it is
generally unclear if such a representation exists [34]. We
show that this is not required, and only one evaluation of the
integrals at a precision comparable to that at which we
evaluate the pentagon functions is sufficient. Nonplanar
integrals introduce added complexity: some exhibit non-
analytic behavior or a logarithmic singularity within the
physical scattering region. We isolate this behavior in the
pentagon functions, and extend the numerical methods of
Refs. [7,32] to deal with it.
Our results open the door to new explorations in many

different directions. On the analytic side, this is the first
complete set of two-loop integrals allowing us to explore
the (extended) Steinmann relations [35–41]. Moreover,
these integrals make it possible to study how unexplained
observations of analytic cancellations in gauge-theory
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amplitudes [31,42–44] extend beyond the leading-color
approximation. In formal studies of QFTs, they have
already been central in bootstrapping results in N ¼ 4
super Yang-Mills theory, leading to new conjectures
[45,46]. Finally, all two-loop Feynman integrals for the
production of a massive boson in association with two jets
at hadron colliders are now readily available, removing a
main bottleneck for these important processes in LHC
physics for which more precise theoretical predictions are
urgently needed. Indeed, it is now possible to go beyond
the leading-color approximation for W þ 2-jet processes
[31,43,47–49], and obtain two-loop results for crucial
processes such as H þ 2 jets that are intrinsically
nonplanar.
Notations and conventions.—We define the momenta of

external particles as pi, i ¼ 1;…; 5, where p2
1 ≠ 0 and

p2
i ¼ 0 for i ¼ 2;…; 5. For a fixed ordering of the massless

legs, there are three planar pentabox (PB) families, three
nonplanar hexabox (HB) families, and two nonplanar
double-pentagon (DP) families that we depict in Fig. 1,
as well as a factorizable planar topology. The factorizable,
PB and HB families have already been studied in the
literature [2,6,8–10]. Here, we define the DP families.
Integrals in these families can generically be written as

I½ν⃗� ¼ e2ϵγE
Z

dDl1

iπD=2

dDl2

iπD=2

ρ−ν99 ρ−ν1010 ρ−ν1111

ρν11 � � � ρν88
; ð1Þ

where we set D ¼ 4 − 2ϵ, and ν⃗ is a vector of integers with
the restriction that ν9; ν10; ν11 ≤ 0. Explicit expressions for
the ρi are given in ancillary files [50].
There are six independent variables sij ¼ ðpi þ pjÞ2,

which we choose to be

s⃗ ¼ fp2
1; s12; s23; s34; s45; s15g: ð2Þ

Together with the parity-odd object

tr5 ¼ 4iεαβγδpα
1p

β
2p

γ
3p

δ
4; ð3Þ

they fully specify a point in the five-particle phase space.
Singularities of Feynman integrals are located at zeroes of
certain determinants; see, e.g., Refs. [51–55]. Three cases
play a special role here: the three- and five-point Gram
determinants

Δ3 ¼ − detGðp1; p2 þ p3Þ;
Δ5 ¼ detGðp1; p2; p3; p4Þ; ð4Þ

where Gðq1;…; qnÞ ¼ 2fqi · qjgi;j∈ f1;…;ng, and the poly-
nomial [9]

Σ5 ¼ ðs12s15 − s12s23 − s15s45 þ s34s45 þ s23s34Þ2
− 4s23s34s45ðs34 − s12 − s15Þ: ð5Þ

While Δ5 ¼ tr25, relating tr5 to
ffiffiffiffi
Δ

p
5 precisely is a subtle

issue. We adopt the convention of Ref. [9] to only use
ffiffiffiffiffiffi
Δ5

p
in the pure integrals’ definitions.
Figure 1 shows a fixed ordering of the massless legs, but

we consider the set of integrals closed under all permuta-
tions of these legs. While Δ5 is invariant under these
permutations, there are three different permutations of Δ3,

denoted ΔðkÞ
3 , and six different permutations of Σ5, denoted

by ΣðkÞ
5 . Expressions for the ΔðkÞ

3 , ΣðkÞ
5 , and Δ5 are given in

ancillary files [50].
Analytic differential equations.—We follow Refs. [3,4,6,9],

where analytic DEs [14–18] in canonical form [19] are
obtained from numerical samples. We focus on the DPmz
and DPzz families, for which we obtain canonical DEs for
the first time. Any integral in the DPmz (DPzz) family can
be written as a linear combination of 142 (179) master
integrals. The top sectors, with eight propagators and nine
master integrals each, were previously unknown. All
integration-by-parts reductions [56–58] are performed
within FiniteFlow [59] (interfaced to LiteRed [60,61]), and
checked with KIRA2.0 [62] and FIRE6 [63].
Let g⃗τ denote a vector whose entries form a pure [13]

basis of master integrals for a family of integrals τ. It
satisfies a DE in canonical form [19]

dg⃗τ ¼ ϵM · g⃗τ; M ¼
X
i

Mid logWi; ð6Þ

where the Wi are the letters of the (symbol) alphabet [33]
associated with g⃗τ. While the Wi are algebraic functions of
s⃗, the matrices Mi are matrices of rational numbers.
Finding a pure basis is still the most challenging aspect
in obtaining DEs in canonical form. We construct educated
guesses for pure bases following the ideas of Refs. [4–6,9],
and test candidate bases by evaluating their derivatives at
numerical points and verifying the factorization of ϵ. Once

(a) (b) (c)

(d) (e)

(g) (h)

(f)

FIG. 1. Two-loop five-point one-mass families. The thick
external line denotes the massive external leg.
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a pure basis is found, we proceed as in Sec. 4 of Ref. [6] to
determine that the alphabet for the DPmz and DPzz families
is contained within the one obtained in Ref. [9]. DPmz and
DPzz have 62 and 74 letters, respectively. As in Ref. [6], we
fit the matrices Mi from numerical evaluations on a finite
field. Our results for the pure bases, the alphabet (closed
under all permutations of the massless legs), and the
analytic DEs can be found in ancillary files [50]. Some
pure integrals were simplified with ideas from Ref. [64].
Construction of one-mass pentagon functions.—The

(one-mass) pentagon functions are a basis of special
functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order in
ϵ required to compute two-loop corrections. The one-loop
and planar two-loop integrals have been previously con-
sidered in Ref. [32]. Here, we discuss a novel approach,
suitable for the nonplanar families, that overcomes bottle-
necks of previous strategies.
We start by considering the ϵ expansion of the master

integrals for each family τ in Fig. 1. To cover all integrals
relevant for an amplitude, we consider all 4! permutations σ
of the massless momenta, denoting the corresponding
master integrals by g⃗τ;σ. We normalize the g⃗τ;σ so that they
have the expansion

g⃗τ;σðs⃗Þ ¼
X
w≥0

ϵwg⃗ðwÞτ;σ ðs⃗Þ: ð7Þ

We obtain the DEs for all g⃗τ;σ by permuting those in

the standard ordering, and use them to write the g⃗ðwÞτ;σ ðs⃗Þ as
Q-linear combinations of Chen iterated integrals [28],

½Wi1 ;…;Wiw �s⃗0ðs⃗Þ ¼
Z
γ
½Wi1 ;…;Wiw−1 �s⃗0d logWiw; ð8Þ

and boundary values at a point s⃗0, g⃗
ðwÞ
τ;σ ðs⃗0Þ. The path γ

connects s⃗0 and s⃗, and the iteration starts with ½�s⃗0 ¼ 1. The
number of integrations w is called the transcendental
weight. Up to two loops, it suffices to restrict our focus
to w ≤ 4. We choose [32]

s⃗0 ¼ ð1; 3; 2;−2; 7;−2Þ; ð9Þ

which is in the physical s45 channel: particles 4 and 5 are in
the initial state, and the remaining particles are in the final

state. The g⃗ð0Þτ;σðs⃗0Þ are rational numbers and are determined
by the first-entry condition [65] up to an overall normali-

zation. For w ≥ 1, we compute the g⃗ðwÞτ;σ ðs⃗0Þ with 60-digit
precision using AMFlow [66], interfaced to FiniteFlow [59] and
LiteRed [60,61].
The structure of the iterated integrals in Eq. (8) is very

well understood [28]: integrals involving different letters
are linearly independent, and products of integrals are
controlled by a shuffle algebra. This enables an algorithmic

construction of a minimal set of functions in which to
express the g⃗ðwÞτ;σ ðs⃗Þ: the one-mass pentagon functions. To
construct this minimal set, we follow the procedure in

Refs. [7,32]. We begin by considering the g⃗ðwÞτ;σ ðs⃗Þ at symbol

level [33] and select a minimal set of the g⃗ðwÞτ;σ ðs⃗Þ from the
symbol-level solutions, starting at weight 1 and proceeding
iteratively up to weight 4. To this end, we consider the set of

coefficients g⃗ðwÞτ;σ ðs⃗Þ for all τ and σ, as well as all weight-w
products of lower-weight functions, and select a subset of
linearly independent elements, preferring products of
lower-weight pentagon functions. This minimizes the
number of “irreducible functions”: functions that cannot
be expressed in terms of products of lower-weight func-
tions. In this way, at each weight we construct a set of

algebraically independent g⃗ðwÞτ;σ ðs⃗Þ, which we call the

pentagon functions and denote by ffðwÞi g. We find 11
irreducible functions of weight 1, 35 of weight 2, 217 of
weight 3, and 1028 of weight 4. The total number is
substantially lower than 2304, the number of independent
master integrals.
We now turn to expressing the g⃗ðwÞτ;σ ðs⃗Þ in terms of

pentagon functions. The approach that we use bypasses
the determination of the relations between the boundary

values g⃗ðwÞτ;σ ðs⃗0Þ, a bottleneck of previous approaches. To
this end, we make the following ansatz: we assume that the

g⃗ðwÞτ;σ are graded polynomials in the pentagon functions and
two transcendental constants, ζ2 and ζ3, over the field of

rational numbers. Let us consider a weight-2 coefficient gð2Þτ;σ

as an example. Our ansatz is

gð2Þτ;σ ¼
X
i

aiτ;σf
ð2Þ
i þ

X
i;j

ai;jτ;σf
ð1Þ
i fð1Þj þ ãτ;σζ2: ð10Þ

We determine the rational numbers aiτ;σ and ai;jτ;σ from
symbol-level manipulations, and the ãτ;σ by numerically
evaluating the coefficients on both sides of the equation at

s⃗0. In this way, we explicitly write all g⃗ðwÞτ;σ ðs⃗Þ in terms of ζ
values and a minimal set of pentagon functions, for which
we have an iterated-integral representation and a boundary
condition valid to 60 digits.
We emphasize that the ansatz of Eq. (10) implies

nontrivial polynomial relations among the g⃗ðwÞτ;σ ðs⃗0Þ.
Previous approaches [7,31,32] to determine these relations
required PSLQ [67] studies of high-precision numerical
evaluations [Oð3000Þ digits] that were obtained from MPL
expressions [8]. Bypassing the need for high-precision
evaluations, which are not available for nonplanar topol-
ogies, is therefore a substantial improvement.
To validate our results, we checked that they agree with

those of Refs. [6,32] for the factorizable and PB families.
For HB families, we compared our results with evaluations
from DiffExp [68] starting at the boundary values of Ref. [9].
We find numerical agreement with the results of Ref. [10]
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for the HBmzz family but were unable to evaluate their
results for HBzzz and HBzmz. For the two DP families, we
started from an evaluation of the pentagon functions, and
used DiffExp to verify that the integrals are regular at all
Euclidean spurious singularities. We further checked
selected permutations of the DP integrals against AMFlow

at random phase-space points.
Numerical evaluation and analytic structure.—The algo-

rithm given above leaves freedom in the definition of
pentagon functions. We leverage it to build a basis of
functions that can be evaluated in an efficient and stable
way, and is informed by the singularities that are expected
in physical quantities. Nonplanar families bring consider-
able new challenges, highlighted below.
The general approach to the evaluation of pentagon

functions follows Refs. [7,30,32,69]. We focus on the
phase-space region corresponding to the s45 channel
defined below Eq. (9), which is sufficient for hadron-
collider processes (other 2 → 3 channels are obtained
through appropriate permutations [32]). We construct the
path γ in Eq. (8) so that it never leaves the s45 channel,
following the algorithm of Ref. [32]. Up to weight 2, we
obtain expressions in terms of logarithms and dilogarithms
[70] with no logarithmic branch points within the s45
channel. At weights 3 and 4 we construct one-fold integral
representations [69] and perform the integration numeri-
cally. We refer to Ref. [32] for a thorough discussion, and
highlight here novel cases where the one-fold integral
representation has a singularity at some point on γ.
We exemplify our approach with weight-3 pentagon

functions, but generalization to weight 4 is straightforward.
The one-fold integral representations of the pentagon
functions are combinations of terms of the form

Iðh;WÞ ¼
Z
γ
hðtÞ∂t logðW½t�Þdt: ð11Þ

For simplicity, we parametrize γ in terms of t so that
∂t logðW½t�Þ diverges at t ¼ 0 (if it does diverge on γ). To
construct a numerically stable algorithm for evaluating the
pentagon functions, we consider the analytic structure of
Eq. (11) in detail. In many instances the singularity at t ¼ 0
cancels in the sum of the contributions of the form of
Eq. (11). We arrange these cancellations analytically as in
Refs. [7,32], and such pentagon functions are infinitely
differentiable in the physical region. The novel behavior in
this work is a feature of five-point one-mass nonplanar

pentagon functions, related to ΣðiÞ
5 ¼ 0 surfaces. All cases

are summarized in Table I, and can be organized in terms of
the local behavior of h and W. In all cases the integrands
diverge. For cases a and b, the singularity is integrable. In

case a,W ¼ Σði≠3Þ
5 ; in case b, d logW is odd with respect toffiffiffiffiffiffiffiffi

Σð3Þ
5

q
and, as h0 is known, we handle the integrable

singularity with an analytic subtraction. In case c,W ¼ Σð3Þ
5

and the integral has a logarithmic singularity. We introduce
a subtraction term and analytically integrate the 1=t
singularity, resulting in a numerical integration over the
remaining integrable singularity. We discuss the analytic

continuation across Σð3Þ
5 ¼ 0 in the Appendix. The distin-

guished role played by Σð3Þ
5 is a consequence of working in

the s45 channel.
Integrable singularities in Eq. (11) complicate the

application of the numerical algorithms of Refs. [7,32].
Since all problematic cases have W ¼ ΣðiÞ

5 , we dub the
subset of pentagon functions with this behavior as FΣ5

.
Integrating over the integrable singularities in cases a and c

TABLE I. Nondifferentiable integral functions due to divergent
integrands in Eq. (11) at singularity of ∂t logðW½t�Þ, which cause
discontinuities (right column).

Case ∂t logðW½t�Þ hðtÞ Continuous

a ðω1=tÞ þOðt0Þ h1=2
ffiffi
t

p þOðtÞ ✓

b ðω1=2=
ffiffi
t

p Þ þOðt0Þ h0 þOð ffiffi
t

p Þ ✓

c ðω1=tÞ þOðt0Þ h0 þOð ffiffi
t

p Þ ✗

(a)

(b)

FIG. 2. Distribution of correct digits compared to quadruple-
precision evaluations over 100 000 points.
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demands higher intermediate precision, at the cost of
performance. This motivates the construction of the penta-
gon functions so that the set FΣ5

is as small as possible,

which also isolates the logarithmic singularity at Σð3Þ
5 ¼ 0

(case c) in as few functions as possible. More generally, we
can organize the construction of the pentagon functions to
make analytic properties manifest. For instance, a con-
jecture about the absence of the letter Δ5 in the properly
defined finite remainders of scattering amplitudes has been
put forward for the massless case (see [71–73] for possible
explanations), and we thus isolate the Δ5 dependence in as
few functions as possible.
The numerical evaluation of the one-mass pentagon func-

tions is available through the C++ library PentagonFunctions++

[29]. To assess its numerical performance, we evaluate all
functions on a sample of 105 points as in Ref. [32]. We
present the distributions of correct digits with standard
intermediate precision for the functions in FΣ5

[blue line

in Fig. 2(a)] and the ones that do not involve the letters ΣðiÞ
5

[orange line in Fig. 2(a)], denoted F̄Σ5
. The blue peak

at six digits in Fig. 2(a) is generated by phase-space
points that use integration paths that intersect the surfaces

ΣðiÞ
5 ¼ 0. As expected, it is absent for the orange line as well

as in Fig. 2(b), where higher intermediate precision is
employed to rescue the cases contributing to the blue peak
mentioned above. Given the evaluation times of a few
seconds per point and the overall good numerical stability,
our results are suitable for immediate phenomenological
applications.
Discussion and outlook.—We complete the calculation

of all two-loop five-point integrals with massless propa-
gators and a single massive external leg. Our results allow
us to study their analytic structure, and to efficiently
evaluate them numerically through weight 4, as needed
for current phenomenological applications. The numerical
evaluation is readily available as a C++ library [29].
The new algorithm we present for constructing pentagon

functions provides a substantial improvement over previous
ones, only relying on the knowledge of pure bases and the
evaluation of the functions at a single point to moderate
precision [12,66]. This robust algorithm will certainly find
applications in other classes of integrals.
Our results open the door to further explorations of the

analytic structure of this class of integrals, for instance
along the direction of Refs. [53–55]. An undoubtedly
important question to explore in more detail is the presence
of logarithmic singularities within the physical region
associated with the letter ΣðiÞ

5 for some master integrals.
Furthermore, our results can be used in the very active area
of bootstrapping in N ¼ 4 super Yang-Mills (see, e.g.,
Refs. [45,46,74–76]). Finally, they will be central to the
calculation of the next-to-next-to-leading-order corrections
to processes such as the production of a massive boson in
association with two jets at hadron colliders, as well as the

ongoing N3LO calculations [77,78] of processes involving
a massive external particle and three massless ones.
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Appendix: Analytic continuation across Σð3Þ
5 ¼ 0

surface.—The analytic continuation of Feynman integrals
across singularities that do not correspond to normal
thresholds is known to be a subtle issue. In this appendix,
we discuss how it was addressed in constructing the
pentagon functions defined in this Letter. More precisely,
we focus on the Σð3Þ

5 ¼ 0 surface, which, as noted in the
main text, introduces a logarithmic singularity in the
physical region corresponding to the s45 channel. Other

similar polynomials, such as ΔðiÞ
3 and Δ5, have a well-

defined sign within this region and so do not lead to
singularities [32].
Let us start by commenting on a problem that is related to

all square roots that appear in our alphabet, that is with both

ΣðiÞ
5 as well as ΔðiÞ

3 and Δ5. There are several letters
involving the square root of these polynomials. These
square roots are introduced as normalizations of otherwise
rational integrands and, in practice, we must choose a
branch for them. This choice is spurious by construction,
and should be made consistently in the definition of the
pentagon functions and in the definition of the pure basis of
integrals. Therefore, without loss of generality, we choose
the standard principal square root branch, i.e., square roots
are either real positive or have a positive imaginary part.
This choice dictates how we evaluate the logarithms of
algebraic letters in the one-fold integral representations. We
verified that these logarithms are continuous along the
integration path and cannot pick up any monodromy
contributions. As expected, the dependence on this pre-
scription cancels out in all quantities that are even under
square-root sign changes, such as scattering amplitudes.
Let us now return to the main issue that we wish to

clarify in this appendix, namely how to handle integrals that
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diverge on Σð3Þ
5 ¼ 0 surfaces (case c of Table I). We start

from the iterated integral representation of the pentagon
functions and manipulate them so that all divergent terms

are explicitly written in terms of logΣð3Þ
5 [79]. We must then

have a prescription to analytically continue such terms

through the Σð3Þ
5 ¼ 0 surface. We define the logarithm as

logΣð3Þ
5 ¼ log

���Σð3Þ
5

���þ iπΘ
�
−Σð3Þ

5

�
; ðA1Þ

where Θ is the Heaviside step function, which is consistent
with our definition of square roots discussed above. We
proved that this prescription is uniquely fixed by assigning
small positive imaginary parts to all Mandelstam invariants.

More precisely, we verified that Σð3Þ
5 receives a small

positive imaginary for an arbitrary path approaching the

Σð3Þ
5 ¼ 0 surface within the s45 channel. The nontrivial part

of the proof involves showing that all derivatives of Σð3Þ
5

evaluated at Σð3Þ
5 ¼ 0 are positive in the s45 channel. The

details of this proof are rather lengthy so we do not
reproduce them here.
Equation (A1) completely determines the analytic con-

tinuation of the integrals and the pentagon functions
through the Σð3Þ

5 ¼ 0 surface. It is, however, instructive
to present further evidence for the correctness of this
procedure. We focus on the simplest integral family that

contains integrals that are singular at Σð3Þ
5 ¼ 0, namely

HBzmz in the permutation ð3 → 4; 4 → 5; 5 → 3Þ of the
external legs (see Fig. 1). First, we use AMFlow to evaluate
the master integrals at several points on a path approaching

the Σð3Þ
5 ¼ 0 surface within the s45 channel. We observe

numerically the onset of the divergence, and that the
evaluation of the pentagon functions is in agreement and

stable also near the singularity. We further evaluate the

master integrals at points on the other side of the Σð3Þ
5 ¼ 0

surface with respect to the base point s⃗0 in Eq. (9),
confirming the validity of our prescription in Eq. (A1).
Second, we use DiffExp [68] to solve the differential
equations along a specially constructed set of paths, which

are illustrated by Fig. 3. Starting from Pþ, where Σ
ð3Þ
5 > 0,

we evolve the master integrals along a path segment PþEþ
into the Euclidean region without crossing the Σð3Þ

5 ¼ 0

surface. We then cross the surface along a path segment
EþE−, while staying within the Euclidean region where

Σð3Þ
5 ¼ 0 does not lead to singularities, which guarantees

that no analytic continuation through this surface is
required. Finally, we return to the physical region via a

path segment E−P−, along which Σ
ð3Þ
5 < 0. As noted in [9],

this allows one to circumvent the singular surface, showing
that the result of continuing across it is uniquely defined.
We then confirmed that the evaluations of the pentagon
functions at the points Pþ and P− agree with the results
from DiffExp.
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