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We construct an infinite family of microstates for black holes in Minkowski spacetime which have
effective semiclassical descriptions in terms of collapsing dust shells in the black hole interior. Quantum
mechanical wormholes cause these states to have exponentially small, but universal, overlaps. We show
that these overlaps imply that the microstates span a Hilbert space of log dimension equal to the event
horizon area divided by four times the Newton constant, explaining the statistical origin of the Bekenstein-
Hawking entropy.
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Introduction.—Bekenstein and Hawking [1,2] proposed,
on the basis of general relativity and quantum mechanics in
curved spacetimes, that black holes behave as thermody-
namic objects, and carry an entropy S ¼ A=4G, where A is
the area of the event horizon, G is Newton’s constant, and
we are working in units where Planck’s constant and the
speed of light are 1. This remarkable formula is universal. It
applies to any black hole regardless of its mass, charge, or
angular momentum, and in any spacetime dimension.
What is the origin of this entropy? Statistical mechanics

asserts that the thermodynamic entropy of a classical
system equals the logarithm of the number of microstates
consistent with the macroscopic parameters. Quantum
mechanics complicates matters. Quantum states form a
Hilbert space; so any suitably normalized linear combina-
tion of microstates is also a microstate. Thus, in quantum
systems we instead identify entropy as the logarithm of the
dimension of the Hilbert space. To give a statistical
mechanical interpretation of black hole entropy, we have
to determine the dimension of the underlying quantum
gravity Hilbert space describing a black hole.
This fundamental problem was solved in a special case

by Strominger and Vafa [3] who explained the entropy of
certain supersymmetric black holes in terms of the Hilbert
space of underlying string theoretic microstates. These
calculations were possible because the black holes in
question (1) have multiple types of electric and magnetic

charges (unlike our world where there is one electromag-
netic field, and no magnetic charge); (2) are extremal
(unlike most astrophysical black holes) so that the mass
achieves a certain lower bound in terms of the charges
required for avoiding naked spacetime singularities; and
(3) are supersymmetric, in that they retain a fraction of the
supersymmetry of the theories in which they are defined
(unlike real black holes which have no supersymmetry to
break), which is central to the computability of the entropy.
Furthermore, the analysis relied on technical details of the
ultraviolet completion of gravity in string theory, which
include many extra dimensions and exotic extended soli-
tonic objects of cosmic scale, thereby obscuring the nature
of these microstates in the semiclassical description of the
black hole. The fundamental question has thus remained:
can we give a universal microscopic explanation for the
entropy of astrophysical black holes? Here, we propose an
answer to this question.
Briefly, we use the fact that in quantum statistical

mechanics, any superposition of microstates is also a
microstate, where a microstate is a normalizable vector
in the Hilbert space with fixed expectation values for
macroscopic observables. Thus, rather than a specific basis
of typical black hole microstates, we simply seek any set of
states that is large enough to span the entire Hilbert space.
We also require this set to be under sufficient control for us
to compute the Gram matrix of state overlaps. The rank of
the Gram matrix determines the maximum number of
linearly independent microstates, giving the dimension
of the Hilbert space. Equivalently, the logarithm of this
rank quantifies the statistical entropy.
To this end, we construct an infinite family of atyp-

ical, but well-controlled, microstates for black holes in
Minkowski space with effective semiclassical descriptions,
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which include dust shells in the black hole interior. Our
construction follows from general relativity, and does not
require any exotic ingredients. Astrophysical black holes
generally have some angular momentum, but we will focus
on nonrotating black holes for analytical simplicity.
Extending methods developed by [4] in the context of
two-dimensional gravity and in [5] for general universes
with a negative cosmological constant, we compute the
overlaps of our microstates in quantum gravity. We find that
they span a Hilbert space of dimension precisely equal to
the exponential of the Bekenstein-Hawking entropy. This
finding explains the microscopic origin of black hole
thermodynamics.
Black hole microstates.—We start by constructing an

infinite family of microstates for an eternal, asymptotically
flat (Minkowski), one-sided black hole (Fig. 1). By micro-
state we refer to a quantum state in the fundamental Hilbert
space of the black hole, with fixed values of the coarse-
grained observables, such as the mass of the black hole.
The microstates that we will consider will have effective
semiclassical descriptions, in terms of black hole solutions
of general relativity coupled to matter. In these solutions,
the black hole is not formed from collapse—rather, it exists
forever, and behind the event horizon there is a “white hole”
singularity where time begins, in addition to a black hole
singularity where time ends. However, as we will discuss
below, their geometry matches the late-time behavior of
black holes forming from collapse, and they can account for
the entropy associated with the collapsing configuration.

All the states we construct have the same geometry between
the horizon and the asymptotic spacetime boundary; as
such they are microstates of the same black hole as seen by
an external observer.
More precisely, outside the horizon all our microstates

match the geometry of a Schwarzschild black hole of radius
rs ¼ 2GM, whereM is the Arnowitt-Deser-Misner (ADM)
mass. They are distinguished by their interior geometries:
each contains a different configuration of matter which
backreacts to generate a distinct interior. The matter
emerges out of the past singularity and dives into the
future singularity, without leaving the black hole region
(Fig. 1). For simplicity, we restrict to matter organized in
spherical thin shells of dust particles, with total rest massm.
The states in the family are labeled by the mass m of the
shell in the interior.
In detail, the exterior metric is the usual Schwarschild

one:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where fðrÞ ¼ 1 − ðrs=rÞ and dΩ2 ¼ dθ2 þ sin2θdφ2 is the
round metric of the unit sphere S2.
This metric can be continued into the interior of the black

hole, at r < rs; and further to a second asymptotic region,
described by the same metric (1). Our microstates corre-
spond to shells of matter which live in the black hole
interior and this second asymptotic region. In the thin-shell
limit, the full geometry inside and outside the shell is
determined by the Israel junction conditions [6] which fixes
the change in the spacetime metric across the shell.
Concretely, the world volume W of the thin shell carries
the localized energy momentum of a pressureless perfect
fluid

TμνjW ¼ σuμuν; ð2Þ

where σ is the surface density of the fluid, and uμ is the
four-velocity field of the dust, tangent to W. The induced
metric on the world volume W is determined by RðTÞ, the
radius of the shell R as a function of its proper time T. From
the point of view of the metric (1), the shell will live at
r ¼ RðTÞ, with T determined by the proper time along
the shell’s trajectory. The equation of motion for RðTÞ,
determined by the Israel junction conditions, is that of a
nonrelativistic particle of zero total energy

Ṙ2 þ VeffðRÞ ¼ 0; ð3Þ

where we defined the effective potential

VeffðRÞ ¼ fðRÞ −
�
M
m

−
Gm
2R

�
2

: ð4Þ

FIG. 1. Penrose diagram of the time evolution of a microstate of
an eternal one-sided black hole. The semiclassical state is defined
at the time reflection-symmetric Cauchy slice Σ. The exterior
geometry extends between the future and past horizons H� and
the conformal null boundaries J �. The interior contains a thin
shell W, which divides the geometry between a region of flat
space < inside the shell, and a region of black hole geometry >
outside the shell. The zigzag lines at the bottom and top are the
white hole and black hole singularities where time starts and
ends. The semiclassical state on Σ is nonsingular and perfectly
well defined.
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Provided that M ≤ m, the shell will expand from the past
singularity, located at finite proper time in the past, and
enter the second exterior region, where it reaches a
maximum radius R� ≥ rs at which VeffðR�Þ ¼ 0. The shell
then turns around and dives into the future interior and
finally the future singularity. For large proper mass
m ≫ M, the shell recollapses at a radius R� ≈Gm=2,
due entirely to its gravitational self-energy.
The geometry inside the shell consists of a portion of

flat space

ds2< ¼ −dt̃2 þ dr̃2 þ r̃2dΩ2; ð5Þ

which caps of smoothly at r̃ ¼ 0. The geometry outside the
shell is given by a two-sided black hole geometry, cut off at
r ¼ R� ≥ rs on the left side.
To better understand this geometry, we can focus on the

time-reflection symmetric hypersurface Σ (Fig. 1) on which
the semiclassical state lives. The induced geometry of this
slice resembles a Wheeler’s “bag of gold” [7]. When the
shell mass is large m ≫ M, the total interior volume of
Σin ⊂ Σ scales as VolðΣinÞ ≈ ðπ=3ÞðGmÞ3, while the sur-
face of the shell σ ¼ Σ ∩ W has maximum area scaling
as AreaðσÞ ≈ πðGmÞ2.
The states we have constructed are labeled by the mass of

the interior shell. A simple generalization is to consider
multiple shells in the interior. We could also consider other
configurations of matter, including exotic matter arising
from string theory. This choices will generate different
interior geometries, while keeping the exterior fixed. As we
will argue below, none of these details will matter for
counting the microstates.
Quantum gravitational overlaps.—The spacetime geom-

etry X of each microstate can be analytically continued into
the Euclidean section along the time reflection-symmetric
hypersurface Σ. The Euclidean geometries define a set

of asymptotic boundary conditions at Euclidean spatial
infinity ∂X. These boundary conditions can be used, within
the conventional path integral construction, to prepare
the corresponding semiclassical state associated with the
microstate of the black hole. Related constructions have
been studied in models of 2d gravity [8,9] and in
AdS=CFT [5,10].
The semiclassical description of the microstates are

constructed on the time reflection symmetric (t ¼ 0) slice
Σ via the Euclidean path integral. In this way, the con-
struction of the state, and the slice where it lives, are both
perfectly regular, analogously to the preparation of the well-
known Hartle-Hawking state in the eternal black hole. Our
state then defines regular initial data determining Lorentzian
time evolution into the future and the past.
In this way, the microstates that we have discussed in the

previous section specify an infinite family of quantum
states fjΨmig of the Hilbert space of the black hole, where
we remind one that m labels the proper mass of the
corresponding matter insertion in the black hole interior,
and that there is no upper bound on m.
This infinite family naively overcounts the Bekenstein-

Hawking entropy. But this is only so if the states are
orthogonal to each other. To get a correct counting of the
dimension of the Hilbert space of the black hole, we must
compute the overlaps hΨmjΨm0 i between our microstates.
This can be done using the gravitational path integral. The
rules are to fix the asymptotic boundary conditions that
prepare the respective states, and to fill in the Euclidean
geometry with all possible saddle-point manifolds that
respect these boundary conditions. We will work in the
simple effective description of the microstates, in terms of
the Euclidean gravitational action coupled to a thin shell

I½X� ¼ −
1

16πG

Z
X
Rþ 1

8πG

Z
∂X

K þ
Z
W
σ þ Ict: ð6Þ

Here, R is the Ricci scalar of the Euclidean manifold X, K is
the extrinsic curvature of its boundary ∂X, σ is the density of
the shell, W is the world volume of the shell, and Ict is a
background substraction counterterm that removes diver-
gences and renormalizes the value of the on-shell action.
The leading contribution to the overlap comes from the

Euclidean manifold in Fig. 2 which has a single asymptotic
boundary where the shell trajectory starts and ends. When
m ¼ m0 these are straightforward to construct and are
simple analogs of those constructed in [5,11]. When
m ≠ m0, we need some way to join the shells from he
Euclidean boundary. This will come from interactions and
we expect the result to be exponentially suppressed in the
mass difference. We take this difference to be arbitrarily
large, so that at leading order the overlap is

hΨmjΨm0 i ¼ δmm0 ; ð7Þ

FIG. 2. Euclidean continuation of the spacetime geometry of
the microstates along Σ. The Euclidean section consists of a
Euclidean black hole (right), and a region of a Euclidean flat
space (left), glued together along the trajectory of a thin shell. The
shell starts at the asymptotic spatial infinity, bounces back at R�,
and gets back to R ¼ ∞. The Euclidean times β̃m; β̃

0
m ≤ β depend

on the mass of the shell.
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where the overbar denotes that the calculation is performed
according to the rules of the gravitational path integral, and
where implicitly we have normalized the states using the
on-shell action of the corresponding Euclidean manifold

ZðmÞ
1 ¼ e−I½Xm�. Therefore, microstates representing differ-

ent classical geometries naively appear to be orthogonal,
suggesting that our family of microstates actually spans an
infinite dimensional Hilbert space.
However, this conclusion is drastically changed by the

appearance of semiclassical wormhole contributions in the
Euclidean path integral that compute higher moments of
this type of amplitude. These wormholes correspond to
nonperturbative effects in quantum gravity. To start with, an
explicit two boundary wormhole contributes to the square
of the overlap

jhΨmjΨm0 ij2 ¼ δmm0 þ Z2

ZðmÞ
1 Zðm0Þ

1

: ð8Þ

The new contribution is given by the action Z2 ¼ e−I½X2�,
where X2 is the Euclidean wormhole manifold that extends
between the two asymptotic boundaries that prepare each of
the overlaps (see Fig. 3). These give order Oðe−SÞ con-
tributions which will dominate any mass-dependent terms
in the no-wormhole contribution. Specifically, the worm-
hole solution is constructed by cutting and gluing two
Euclidean black hole solutions along the trajectories of the
two thin shells. The detailed construction of such worm-
holes can be found in [10,11] for the case of AdS space, and
we extend them here to the case of Minkowski spacetime.

Similarly, the connected contribution to the nth product
is nonvanishing due to the appearance of n-boundary
wormholes

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc ¼
Zn

Zðm1Þ
1 …ZðmnÞ

1

:

ð9Þ

The connected contribution Zn ¼ e−I½Xn� corresponds to a
semiclassical wormhole Xn with n boundaries. Again, this
wormhole is a classical solution to equations of motion. It
consists of two black holes joined through the different
shells, see [5,11] for explicit details in AdS.
The “nonfactorization” of the inner products due to

nonperturbative effects in quantum gravity might also
seem disturbing at first sight. We provide a simple
microscopic interpretation of these overlaps and non-
factorization in Supplemental Material [12]. The inter-
pretation is based on the Eigenstate thermalization
hypothesis [15,16]. Briefly, applied here it asserts that
these amplitudes should be viewed as the statistics of the
fine grained microstates, whose precise computation
would involve the control of erratic phases. These erratic
phases are invisible to the gravity computation which
naturally treats them as random and performs an effective
average over them. Nonfactorization is naturally associ-
ated with an average over random phases.
Below we will need generic n moments of the inner

product. These moments can be computed in a straightfor-
ward manner for general shell masses, but the expressions
are not very illuminating. Luckily we will only need them
in the regime of large masses mi ≫ M. In this case, the
wormhole action simplifies and reduces to

hΨm1
jjΨm2

ihΨm2
jjΨm3

i…hΨmn
jjΨm1

ijc ≈
ZbhðnβÞ
½ZbhðβÞ�n

; ð10Þ

where ZbhðβÞ ¼ e−IbhðβÞ and IbhðβÞ is the gravitational
action of the Euclidean Schwarzschild black hole of inverse
temperature β, where β ¼ 8πGM is the inverse temperature
of the original black hole. Equivalently, the action IbhðβÞ is
the Euclidean gravity action first computed in the seminal
article by Gibbons and Hawking [17]. Hence, we conclude
that the overlaps become universal in this limit, indepen-
dent of the actual masses of the shells characterizing the
microstates.
Counting microstates.—We now consider an infinite

subfamily of black hole microstates fjΨmj
ig for shells with

mass mj ¼ jm for j ¼ 1; 2;…, where m is a sufficiently
large value of the mass. The objective is to determine the
dimension of the Hilbert space spanned by these micro-
states. To this end, we consider the Gram matrix of overlaps
for a finite subset of these states

FIG. 3. Euclidean wormhole contribution to the second mo-
ment of the overlap. The wormhole has the two inner products as
its boundaries. It consists of two Euclidean black holes in flat
space, glued along the two shells.
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Gij ¼ hΨmi
jjΨmj

i; ð11Þ

where i; j ¼ 1;…;Ω. This Gram matrix is Hermitian and
positive semidefinite. The number of nonzero eigenvalues
of this matrix counts the number of linearly independent
microstates in the given subset. Equivalently, the rank of this
matrix gives the Hilbert space dimension spanned by the set.
We seek to compute the rank of the Gram matrix as a
function of Ω.
As mentioned above, the gravitational computations of

the moments of this Gram matrix suggest that we interpret
it as a random matrix with moments given by the universal
overlaps (10). In order to count black hole microstates for a
given energy from these overlaps, i.e., the microcanonical
degeneracy, we project the previous universal expressions
into a given energy via an inverse Laplace transform of the
wormhole contributions

ZbhðnβÞ ¼
Z

dE ρðEÞe−nβE; ð12Þ

and for a given microcanonical window of energies
½E;Eþ ΔE�, we define the functions

eS ≡ ρðEÞΔE; Zn ≡ ρðEÞe−nβEΔE: ð13Þ

The function S coincides with the Bekenstein-Hawking
entropy [1,2]

S ¼ A
4G

; ð14Þ

but notice that, at this stage, this function lacks the
interpretation in terms of the dimension of black hole
Hilbert space. Here, it is just recontextualized as a function
controlling nonperturbative wormhole contributions to the
gravitation path integral.
Using the microcanonical expressions (13), in

Supplemental Material [12] we show that the density of
states of the Gram matrix is given by

DðλÞ ¼ eS

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ −

�
1 −

ffiffiffiffiffi
Ω
eS

r �2���
1þ

ffiffiffiffiffi
Ω
eS

r �2

− λ

�s

þ δðλÞðΩ − eSÞθðΩ − eSÞ: ð15Þ

This density of states has a continuous part and a singular
part. The eigenvalues accounted by the continuous part are
all positive definite. The singular part counts the number of
zero eigenvalues. Therefore, the rank of the Gram matrix is
the number of eigenvalues contained in the continuous part
of the distribution. We thus conclude (i) For Ω < eS, the
rank of G is given by Ω. (ii) For Ω > eS, the rank of G is
given by eS.

For Ω < eS, we can thus use the Gram-Schmidt pro-
cedure to construct an orthonormal set of vectors. For
Ω > eS this will fail, as the microstates will no longer be
linearly independent. This gives the main result of this
Letter, namely that the black hole microstate degeneracy,
equal to the number of possible orthogonal states in a given
energy band is equal to the exponential of the Bekenstein-
Hawking entropy (14). Equivalently, the present microstate
construction provides a microscopic statistical understand-
ing of the entropy of black holes in Minkowski spacetime.
Let us summarize the intuition behind our result. Even if

we keep adding potential microstates, there is a point at
which these states cannot be orthogonal anymore. This
point is controlled by the universal statistics of the inner
product, themselves controlled by the Bekenstein-Hawking
entropy. As proposed in the introduction, the solution to the
problem of the microscopic origin of the entropy of general
black holes is not to construct a specific set of eS micro-
states. Indeed, there are infinite numbers of such sets, even
when they are constrained to be semiclassical and geo-
metrical. The problem is to count how many orthogonal
states we can build out of those, and prove this counting
gives rise to the right Bekenstein-Hawking dimension.
Discussion.—Gibbons and Hawking [17] proposed that

the Euclidean gravitational path integral should be under-
stood as a thermal free energy, and extracted an entropy
from this. In our calculation, the same path integral appears
in a different way that is manifestly tied to a microcanonical
state counting interpretation. Specifically, we used this path
integral to prepare semiclassically well-controlled micro-
states and compute their overlaps.
The microcanonical Hilbert space dimension then follows

from a universal norm of the overlaps of our microstates, an
output of the gravitational path integral that we discover. We
propose an interpretation: the microstates become “random”
relative to each other, if the masses of their respective shells
are very different. The average norm of the overlap between
two random states is universal and only depends on the
Hilbert space dimension. It would be interesting to under-
stand how some UV information about the statistics of state
overlaps makes its way into the semiclassical path integral.
We do not use details of string theory, AdS=CFT, or any

other UV formulation of quantum gravity. Our assump-
tions are (a) there is some UV completion, and (b) the
semiclassical Euclidean path integral provides sensible
information about this completion. Our results then
explain black hole entropy in any theory that has general
relativity coupled to massive matter as a low-energy limit.
In particular, the construction works in top-down models
such as those appearing in string theory and AdS=CFT,
since these theories contain the ingredients to construct our
microstates. Perhaps this explains the universality of the
Bekenstein-Hawking entropy formula. Of course, the
black hole entropy will have subleading, nonuniversal
corrections. Some of these can be computed explicitly
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from the semiclassical matter, by including one-loop
determinants correcting the universal overlaps. Still other
corrections, related for example to the discreteness of the
exact quantum density of states, will depend on the precise
UV completion, and will require a microscopic under-
standing of these states. It would be very interesting to
achieve such an understanding.
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