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The intrinsic presence of ghosts in the symmetric teleparallel framework is elucidated. We illustrate our
general arguments in fðQÞ theories by studying perturbations in the three inequivalent spatially flat
cosmologies. Two of these branches exhibit reduced linear spectra, signalling they are infinitely strongly
coupled. For the remaining branch we unveil the presence of seven gravitational degrees of freedom and
show that at least one of them is a ghost. Our results rule out fðQÞ cosmologies and clarify the number of
propagating degrees of freedom in these theories.
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Introduction.—The alternative geometrical interpreta-
tions of general relativity (GR) [1] in terms of torsion
and nonmetricity have received considerable attention in
recent years. Not only do they allow for novel and fresh
looks at different aspects of gravity but they have also
seeded new avenues to explore departures from GR.
Experience has shown that modifying GR is not an easy
task and it is common to find that modified gravity theories
fail already at the purely theoretical level before even
considering their potential phenomenological applications.
While some of these problems appear quite evidently from
the very construction of the theories, some other patho-
logies can be more subtle and, hence, easy to overlook.
Furthermore, since they do not necessarily make their
presence apparent in certain scenarios, the seriousness of
the problems they bring along can be missed and not
properly tackled. This occurs for the class of modified
gravity theories formulated as extensions of the symmetric
teleparallel equivalent of GR (STEGR) [2] where the
geometry only has nonmetricity. The purpose of this
Letter is to put forward the problematic nature of these
theories. For the sake of concreteness, we shall focus on the
so-called fðQÞ gravity [3] that has received a considerable
amount of attention for cosmology and black hole physics
lately (see e.g., [4–8]), but their fundamental problems
seem to be underappreciated. These theories are known to
be infinitely strongly coupled around maximally symmetric
backgrounds [3,9], a feature that contributes to the unap-
pealing nature of these theories for phenomenology.
However, the most serious hazard for these theories is
the expected presence of ghosts. We will explain why
ghosts are expected to arise in theories within the sym-
metric teleparallel framework and we will show it explicitly
for the perturbations of cosmological solutions within fðQÞ
gravity. In doing so we will also unveil the presence of

seven propagating degrees of freedom (d.o.f.) for these
theories, thus clarifying their physical content.
Symmetric teleparallelism.—The symmetric teleparallel

geometries are characterized by a flat and torsion-free
connection so it can be written as

Γα
μβ ¼

∂xα

∂ξρ
∂μ∂βξ

ρ ð1Þ

with ξρ arbitrary functions. It is possible to choose
coordinates such that ̊ξα ¼ xα so the connection trivializes.
This is the so-called coincident gauge. If we have a metric
gμν, the connection is determined by the nonmetricity

Qαμν ¼ ∇αgμν: ð2Þ

In the coincident gauge, the nonmetricity reduces to
Q̊αμν ¼ ∂αgμν, while in an arbitrary gauge we need to use
the connection (1). Obviously, ∂αgμν is not a tensor under
arbitrary diffeomorphisms and the nonmetricity Qαμν

defined in (2) can be interpreted as the covariantization
of ∂αgμν achieved by introducing suitable Stückelberg
fields, namely ξα. We refer to [10] for a more detailed
discussion as well as other possible Stückelbergization
procedures.
The connection (1) possess a global symmetry given by

ξα → Aα
βξ

β þ bα ð3Þ

with Aα
β and bα a constant matrix and vector respectively.

This symmetry represents the freedom to perform an
arbitrary global general linear transformation of the coor-
dinates together with a global translation. Thus, any theory
constructed in the symmetric teleparallel geometries will
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have a set of conserved charges associated to this global
symmetry. In particular, the shift symmetry guarantees that
the equation for the Stückelberg fields will adopt the form
of a conservation law

∂μ

�
∂L

∂ð∂μξαÞ
− ∂ν

∂
2L

∂ð∂ν∂μξαÞ
�
¼ 0; ð4Þ

with L ¼ ffiffiffiffiffiffi−gp
L the Lagrangian density. Although the

charges derived from these conservation laws are physi-
cally useful, they do not play any role in the dynamical
content of the theories. As it turns out, it is convenient to
promote the associated global symmetries to gauge sym-
metries with the corresponding Bianchi identities in order
to ensure the viability of the theory [11]. The problem with
theories formulated in the symmetric teleparallel arena can
be better diagnosed by going to the coincident gauge where
the nonmetricity reads Q̊αμν ¼ ∂αgμν. Thus, if we have an

arbitrary action S½gμν;Q̊αμν�, we will have derivative self-
interactions for the graviton that break diffeomorphisms
and, in general, we will have up to 10 propagating degrees
of freedom. Since we know that a spin-2 field can propagate
at most 5 healthy d.o.f. if it is massive and 2 if it is massless,
we conclude that these theories will be prone to propagat-
ing ghosts (see e.g., [12–15]). From the perspective of the
Stückelberg fields, the presence of ghosts is associated to
Ostrogradski instabilities [16] because ξα enters with two
derivatives in the connection (1) so that, for a generic
action, the corresponding equations of motion will be
fourth order. This is nothing but a version of the Boulware-
Deser ghost [17]. In this respect, the appearance of
Ostrogradski ghosts in the symmetric teleparallel frame-
work is different from other scenarios where they appear
due to pathological nonminimal couplings of additional
fields that do not arise as Stückelberg fields (see e.g.,
[18,19]). The STEGR evades this problem because its
action is given by the nonmetricity scalar:

Q≡1

4
QμνρQμνρ−

1

2
QμνρQνμρ−

1

4
Qν

μνQ
μρ
ρ þ1

2
Qν

μνQ
ρμ
ρ ; ð5Þ

which has some remarkable properties. In the coincident
gauge, it still possesses a gauge (diffeomorphisms) sym-
metry ensuring that only two components of the metric are
propagating d.o.f. Let us notice that these diffeomorphisms
are different from the original ones present in all the
symmetric teleparallel theories and which are exhausted
in the coincident gauge. Another way of understanding this
result is by noticing that the Stückelberg fields only enter as
a total derivative [see e.g., (11) below] so their equations of
motion are trivial rather than fourth order. This is another
way of saying that the Stückelberg fields are not necessary
to restore covariance because the theory already is
covariant.

Since the nonmetricity scalar gives rise to an exceptional
theory, one could think that their nonlinear extensions fðQÞ
could also have remarkable properties. This happens for the
curvature formulation of GR whose action is given in terms
of the Ricci scalar R of the Levi-Civita connection.
The nonlinear extensions fðRÞ, that could be expected
to suffer from Ostrogradski instabilities, are actually free of
them [20] and they simply propagate one additional scalar
that can be ascribed to a conformal mode of the metric. The
case of fðQÞ is however different and one hint that things
are worse is that the fðQÞ theories break the diffeomor-
phisms in the coincident gauge or, in other words, they
bring the Stückelberg fields back to life through derivative
interactions, which means that they will have higher order
equations of motion. Some problematic features of these
theories have already been pointed out in the literature
(including the presence of a ghost [9]) and here we will
extend those findings. Before delving into that, we will
discuss the cosmological configurations that can be con-
structed in the symmetric teleparallel geometries.
Cosmological configurations.—We will adapt the results

of [21] to construct the Stückelberg fields configurations
for spatially flat cosmologies. We will use the general
teleparallel reference frames realising the Euclidean sym-
metry ISO(3) of the spatially flat cosmologies that are
named the trivial branch and the nontrivial branches I and II
in [21]. [22] Since the symmetric teleparallel geometry
corresponds to the integrable frames, we need to impose
such a condition. We will do it for the three spatially flat
branches and we find the following configurations for the
Stückelberg fields: (a) Trivial branch:

ξ0 ¼ ξðtÞ; ξi ¼ σ0xi; ð6Þ

with σ0 a constant. The isotropy is realized by compensating
the spatial rotations xi → Ri

jx
j with internal transformations

(3) of the form Ai
j ¼ ðR−1Þij, while spatial translations

x⃗ → x⃗þ x⃗0 are compensated with a shift b⃗ ¼ −σ0x⃗0.
(b) Nontrivial branch I:

ξ0 ¼ ξðtÞ − 1

2
σ0λjx⃗j2; ξi ¼ σ0xi: ð7Þ

Rotations are realized as in the trivial branch, but translations
need a little more work to guarantee homogeneity of ξ0. The
internal transformation that restores homogeneity of that
component is given by A0

i ¼ σ0δijx
j
0 together with a shift

b0 ¼ 1
2
σλjx⃗0j2. (c) Nontrivial branch II:

ξ0 ¼ ξðtÞ; ξi ¼ �
λξðtÞ þ σ0

�
xi: ð8Þ

The homogeneity of ξ⃗ now requires Ai
0 ¼ −λxi0 and the shift

b⃗ ¼ −σ0x⃗0, while rotations are realized as in the other
branches.
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The three branches can be related by introducing the
following parametrization:

ξ0 ¼ ξðtÞ − αI
2
σ0λjx⃗j2; ξi ¼ �

αIIλξðtÞ þ σ0
�
xi; ð9Þ

so the trivial branch is obtained for αI ¼ αII ¼ 0 and the
nontrivial branches I and II correspond to ðαI ¼ 1; αII ¼ 0Þ
and ðαI ¼ 0; αII ¼ 1Þ, respectively. The trivial branch is
recovered from the nontrivial branches in the limit λ → 0
and all the branches are characterized by a single function
of time. In terms of the symmetries, the nontrivial reali-
zation of homogeneity trivializes as we take λ → 0.
The above cosmological configurations will then be

compatible with the symmetries of the FLRW metric
described by the line element

ds2 ¼ −nðtÞ2dt2 þ aðtÞ2δijdxidxj; ð10Þ

with nðtÞ and aðtÞ the lapse and the scale factor, respec-
tively. The nonmetricity scalar then reads

Q ¼ 6ȧ2

a2n2
þ 3λ

a3n
d
dt

�
αI
σ0an

ξ̇
− αII

a3

n
ξ̇

λξþ σ0

�
; ð11Þ

so the Stückelberg fields contribute a total derivative toffiffiffiffiffiffi−gp
Q. Let us notice that the nonmetricity scalar has a

time-reparametrization symmetry t → ζðtÞ, n → n=ζ̇ that
does not involve the Stückelbergs. If the action is linear in
Q, the ξ’s do not contribute, as expected, but for nonlinear
functions they will enter with second order derivatives so
the connection equation will be fourth order as anticipated
above. This is an explicit indication of the general argu-
ment given above that these theories will be prone to
Ostrogradski instabilities or, in other words, it can be
interpreted as a signal that a version of the Boulware-Deser
ghost is present. Since they enter as a total derivative, one
might hope for the appearance of some special features for
the fðQÞ theories that would tame the ghost. This does not
seem to be the case since the fðQÞ theory can be brought
into a form close to an Einstein frame given by [9]

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−q

p �
RðqÞ þ 6ð∂ϕÞ2 þ UðϕÞ

− 2ðqαβqμν − qαμqβνÞ∂αϕ∇βqμν
�
; ð12Þ

where qμν is a metric conformally related to gμν, ϕ is the
conformal mode, and UðϕÞ its potential, which is deter-
mined by the form of the function fðQÞ. We refer to [9] for
more details and a more extensive discussion. Here we only
want to highlight that the kinetic term of the conformal
mode enters with the wrong sign, thus suggesting that the
theory propagates a ghost. The reasoning is that the kinetic
term of the conformal mode will contribute a negative
component to the diagonal of the kinetic matrix of the

system. Since a kinetic matrix with a negative value in the
diagonal cannot be positive definite, we conclude that
the theory is prone to propagating at least one ghost.
Furthermore, the second line in (12) contains either non-
diffeomorphism-invariant derivative interactions between
qμν and the conformal mode in the coincident gauge or,
equivalently, second order derivatives of the Stückelberg
fields coupled to derivatives of the conformal mode. In both
cases, this would signal another potential source of ghosts.
We will confirm the expected presence of ghosts with an
explicit calculation.
Cosmological nonviability of fðQÞ theories.—For the

sake of generality, we will include a matter sector with a
canonical scalar field χ so our action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
fðQÞ − 1

2
ð∂χÞ2 − VðχÞ

�
; ð13Þ

with VðχÞ some potential for the scalar field. The equations
of motion can be obtained from the minisuperspace
approach by introducing our cosmological Ansatz and
taking variations with respect to nðtÞ, aðtÞ, ξðtÞ, and the
homogeneous scalar field χ̄ðtÞ. We have explicitly checked
that the obtained equations coincide with the covariant
equations. We will not give their general form, but it is
useful to realize that the connection equations for the
nontrivial branches read

branch I∶
d
dt

	
λσ0anḟQ

ξ̇2



¼ 0; ð14Þ

branch II∶
λ

λξþ σ0

d
dt

	
a3ḟQ
n



¼ 0; ð15Þ

while the equation for the trivial branch trivializes. For the
branch I we obtain a conservation equation due to the
obvious shift symmetry ξ → ξþ c with c a constant that is
inherited from the general shift symmetry ξ0 → ξ0 þ b0 of
the full theory. Although this symmetry is not present in the
branch II, it still adopts the form of a conservation law. Both
equations trivialize for fQQ ¼ 0, as one would expect since
this corresponds to GR. Furthermore, the trivialization of
the connection equation in this case leads to the usual
Bianchi identities for the background that, in turn, lead to
the standard conservation equation for the matter sector. In
the general case (for any of the three branches), we still
have the Bianchi identities

n
d
dt

δS̄
δn

− ȧ
δS̄
δa

− χ̇
δS̄
δχ

− ξ̇
δS̄
δξ

≡ 0; ð16Þ

where S̄ represents the action after evaluating the cosmo-
logical configuration (minisuperspace approach).
The conservation equations (14) and (15) can be inte-

grated once to give
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−
2λσ0anḟQ

ξ̇2
¼ JI and

λa3ḟQ
n

¼ JII; ð17Þ

with JI;II the conserved charges that characterize the
solutions (the numerical factors have been introduced for
convenience). Let us notice that, for generic f, the solutions
with trivial charge JI;II ¼ 0 are only compatible with either
the trivial branch λ ¼ 0 or, else, they require a constant
nonmetricity scalar Q.
We will now turn our attention to the more interesting

inhomogeneous perturbations. For a clear comparison of
the three branches, we will work around the generic
configuration (9) in terms of αI and αII. We will use a
gauge with unperturbed Stückelberg fields so δΓα

μν ¼ 0.
Since this choice exhausts the diffeomorphisms freedom,
we need to take into account all the metric perturbations
and we will parametrize them in conformal time η (for
which n ¼ a) as

δg00¼−2a2ϕ;

δg0i¼a2ð∂iBþBiÞ;

δgij¼a2
�
−2ψδijþ∂i∂jEþ1

2
ð∂iEjþ∂jEiÞþhij

�
; ð18Þ

with δijhij ¼ 0 and ∂iBi ¼ ∂iEi ¼ 0 ¼ ∂ihij. The deriva-
tives with respect to the conformal time will be represented
with a prime. The matter sector will be perturbed as
χ ¼ χ̄ðηÞ þ πðη; x⃗Þ. Let us then proceed to computing
the quadratic action for the different sectors in increasing
order of difficulty. For the subsequent computations we will
work in Fourier space, make extensive use of the back-
ground equations of motion, and perform integrations by
parts. We will use the same symbols for the Fourier
transform of the perturbations.
The tensor sector is governed by

Sð2Þ
ten ¼

1

2

X
α¼þ;×

Z
dηd3ka2fQ

�
jh0αj2−

	
k2þαIJIξ0

a2fQ



jhαj2

�
;

ð19Þ

and its healthiness requires fQ > 0 to avoid ghosts in all the
branches. The tensor modes also acquire a mass due to the
nontrivial background charge JI which only contributes in
the branch I. This mass is positive provided JIξ0 > 0.
The vector sector contains B⃗ and E⃗. However, B⃗ is

nondynamical and can be integrated out, leaving the
following action:

Sð2Þ
vec ¼ 1

2

Z
dηd3k αIJIξ0

"
jE⃗0j2

1þ JIξ0
a2fQk2

− k2jE⃗j2
#
: ð20Þ

In the UV regime with k2 ≫ ðJIξ0=a2fQÞ, we have

Sð2Þ
vec;UV ¼ 1

2

Z
dηd3k αIJIξ0

�jE⃗0j2 − k2jE⃗j2�; ð21Þ

so the absence of ghosts in the vector sector for the branch I
requires JIξ0 > 0. For the trivial branch and the branch II,
this sector trivializes which means that E⃗ becomes strongly
coupled in those branches and this can be associated to the
appearance of an accidental invariance under transverse
diffeomorphisms.
Finally, in the scalar sector, the perturbation B is again

not dynamical and we can integrate it out to obtain

Sð2Þ
scal ¼

1

2

Z
dηd3ka2

�
Φ0K̂sΦ0†þΦ0N̂ sΦ†−ΦV̂sΦ†þ c:c:

�
ð22Þ

with Φ ¼ ðφ;ψ ; E; πÞ and c.c. stands for complex con-
jugate. Instead of giving the full expression of the matrices,
we will simply quote the determinant of the kinetic matrix

det K̂s ¼ αI
9λ2σ20f

2
QfQQ

2a2ξ02
h
1 − k2 ðξ00−2Hξ0Þ2

JIξ03
fQQ

i k4; ð23Þ

with H≡ a0=a. This determinant vanishes for both the
trivial branch and the branch II, showing that they have a
reduced linear spectrum and, thus, they contain infinitely
strongly coupled modes. On the other hand, all the
remaining scalar modes propagate for the branch I (with
JI ≠ 0). If we now take the UV, the determinant reduces to

ðdetKsÞUV ≃ −
9JIξ0λ2σ20f

2
Q

2a2ðξ00 − 2Hξ0Þ2 k
2: ð24Þ

Since we need fQ > 0 for the gravitons to be nonghostly
and the stability of the vector sector requires JIξ0 > 0, we
see that the scalar sector cannot be ghost-free, since we
have ðdetKsÞUV < 0. This proves the advertised presence
of at least one ghost in the cosmological spectrum of the
fðQÞ theories in this branch and concludes our demon-
stration of the nonviability of spatially flat fðQÞ cosmol-
ogies. We have performed an analogous analysis in the
Einstein frame (12) and confirmed the presence of a ghost.
In fact, this analysis allows us to show the presence of a
ghost for the scalar-nonmetricity theories fðQ; χÞ, the only
difference being that the potential in (12) is now
U ¼ Uðϕ; χÞ, and we will present the details elsewhere.
Discussion.—In this Letter we have discussed why

theories formulated in a symmetric teleparallel geometry
are generically prone to be plagued by ghosts. This is a
feature that makes these theories unappealing for phenom-
enological applications such as cosmology or black hole
physics. In order to illustrate these problems, we have
focused on the cosmology of spatially flat FLRW universes
within the class of fðQÞ theories, since they might have
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been expected to be exceptional very much like fðRÞ
theories among generic metric theories containing higher
order Riemann terms. As a byproduct of our analysis, we
have unveiled the presence of seven dynamical d.o.f.
associated with the gravitational sector in one of the
branches, thus clarifying the issue of the number of
propagating d.o.f. in fðQÞ, which has remained elusive
in previous Hamiltonian analyses [23–25]. Let us note that
seven in fact exhausts all the possible d.o.f. in fðQÞ since
the shift is never dynamical in these theories (as we have
corroborated in our analysis of the cosmological perturba-
tions). An upper bound of seven d.o.f. has also been
suggested in [24]. Thus, the propagating d.o.f. in the
coincident gauge correspond to the six components of
the spatial metric plus the lapse. This is once more a signal
for the presence of the Boulware-Deser ghost. In the
Einstein frame (12) where both the lapse and the shift
are nondynamical [9], these seven d.o.f. could be associated
with the two tensorial modes of the graviton, the conformal
mode and the four Stückelberg fields ξα. Our results will be
useful to perform the Hamiltonian analysis for the pertur-
bations in the branch I to elucidate the Hamiltonian
structure of the theories without performing the full
Hamiltonian construction.
The presence of 7 d.o.f. in the nontrivial branch I allows

us to establish the existence of strong coupling problems in
the other two spatially flat branches that have reduced
linear spectra. In the branch containing the 7 d.o.f., we have
explicitly demonstrated the impossibility of having a ghost-
free linear spectrum, in agreement with our general argu-
ment. Our results thus show the nonviability of all the
spatially flat cosmologies for fðQÞ theories.
Our main conclusion is that the exposed shortcomings of

the symmetric teleparallel framework need to be tackled
before theories beyond coincident GR formulated in this
framework can be claimed to lead to physically sensible
applications in e.g., cosmology and/or black hole physics.
Additionally, having unveiled the number of d.o.f. in fðQÞ
our results will permit one to easily diagnose strong
coupling problems in other backgrounds.
To end this Letter, let us comment that the problems with

the symmetric teleparallel framework will also arise in the
extensions of the general teleparallel equivalent of GR [11]
where the torsion-free condition is dropped. As already
explained in [11], the spectrum of those theories contain
additional spin-2 fields as well as nongauge invariant
derivative self-interactions for the spin-2 modes that will
propagate ghosts. To give a more positive ending, we shall
conclude by stating that, despite not being suitable for
physical applications, this framework does possess a series
of compelling theoretical features that can be interesting to
explore in more detail. Furthermore, the symmetric tele-
parallel landscape can also be deformed so it can accom-
modate viable physical models. A potentially intriguing

route would be, for instance, providing a geometrical
foundation for the ghost-free derivative interactions con-
structed in [26].
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