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We show that some sets of quantum observables are unique up to an isometry and have a contextuality
witness that attains the same value for any initial state. We prove that these two properties make it possible
to certify any of these sets by looking at the statistics of experiments with sequential measurements and
using any initial state of full rank, including thermal and maximally mixed states. We prove that this
“certification with any full-rank state” (CFR) is possible for any quantum system of finite dimension d ≥ 3

and is robust and experimentally useful in dimensions 3 and 4. In addition, we prove that complete Kochen-
Specker sets can be Bell self-tested if and only if they enable CFR. This establishes a fundamental
connection between these two methods of certification, shows that both methods can be combined in the
same experiment, and opens new possibilities for certifying quantum devices.
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Introduction.—Nonlocality [1] and contextuality [2] are
two fundamental predictions of quantum theory. Quantum
theory also predicts that, in certain cases, there is an
essentially unique way to achieve some specific nonlocal
[3–5] or contextual [6–8] correlation. Consequently, the
observation of this specific correlation allows us to infer
which quantum state has been prepared and which quan-
tum observables have been measured, without making
assumptions about the functioning of the devices used in
the experiment [3–8].
However, none of the existing “device-independent” (DI)

certification methods work if the fidelity of the prepared
state with respect to a specific pure state is below a certain
threshold. It is this specific pure state that guarantees the
uniqueness of the quantum realization in the noiseless
(ideal) case. In particular, none of the methods works if
the prepared state is maximally mixed. This leads to the
question of whether it would be possible to certify quantum
observables using correlations produced by measurements
on unspecified mixed states, including the maximally
mixed state.
That, in quantum theory, this question may have an

affirmative answer is suggested by the observation that, for
any quantum system of finite dimension d ≥ 3, there exist
finite sets of observables that produce contextual correla-
tions for any quantum state [9–12]. These sets of observ-
ables are called state-independent contextuality (SI-C)
sets [2,13,14]. SI-C sets have fundamental applications

in quantum information [15–28] and have been exper-
imentally tested [29–34].
But the existence of SI-C sets itself leads to another

question: are there SI-C sets that are unique up to an
isometry? This question is particularly relevant for under-
standing the mathematical structure of the set of quantum
observables. Interestingly, if the answer to this question is
positive, then there may be a connection to the question of
whether there are quantum observables that can be certified
with arbitrary mixed states.
In this Letter, we first show that there are SI-C sets that

(i) are unique up to an isometry, and (ii) have a SI-C witness
W that achieves the same value for every initial quantum
state. These SI-C sets have therefore a characteristic
signature that can be experimentally tested: the relations
of compatibility between the observables (which are
encoded in the expression of W) and the state-independent
value of W.
Next, we will show that SI-C sets with properties (i) and

(ii) can be certified from the correlations of experiments
with sequential measurements performed on any full-rank
mixed state, including thermal and maximally mixed
states. As soon as a mixed state of full rank gives the
characteristic value for W, any other state will do so. This
leads to a method for certifying quantum observables from
correlations that is fundamentally different than self-
testing based on Bell inequalities [3–5], state-dependent
contextuality [6–8], prepare-and-measure [35,36], and
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steering [37–39]. There are two fundamental differences:
(a) The initial state required for the certification is not
determined by the set of observables to be certified;
any state of full rank can be used. (b) The certification
guarantees the state-independent uniqueness (up to an
isometry) of the set of observables.
In addition, we show that this new method, named

certification with any full-rank state (CFR), is possible in
every finite dimension d ≥ 3, and provide a way to obtain
sets of observables that enable CFR in any d ≥ 3. We also
prove that CFR is robust against experimental imperfec-
tions using examples in d ¼ 3 and 4, and show how to test
the robustness in any other case.
Finally, we show that, for a fundamental class of SI-C

sets, CFR is a necessary condition for Bell self-testing. This
points out a connection between two different forms of
certification and shows that these two forms can be applied
simultaneously in Bell experiments with sequential mea-
surements. This opens up some interesting possibilities
which are discussed.
Certification with any full-rank state.—Unless otherwise

indicated, hereafter we will focus on SI-C sets of projectors
(rather than general self-adjoint operators) and on a special
type of contextuality witness that can be defined from them
using the following result, which is a generalization of a
result in [40], whose proof is in [13].
Lemma 1.—Given a finite set of observables fΠig, with

possible results 0 or 1, and graph of compatibility G
(in which each Πi is represented by a vertex i∈V and
there is an edge ði; jÞ∈E if Πi and Πj are compatible), the
following inequality holds for any noncontextual hidden-
variable (NCHV) theory:

W ≔
X

i∈V

wiPi −
X

ði;jÞ∈E

wijPij ≤
NCHV

αðG; w⃗Þ; ð1Þ

where w⃗ ¼ fwigi∈V is a set of positive weights for the
vertices of G, wij ≥ max ðwi; wjÞ, Pi ¼ PðΠi ¼ 1Þ is the
probability of obtaining outcome 1 when measuring observ-
able Πi, Pij ¼ PðΠi ¼ 1;Πj ¼ 1Þ is the probability of
obtaining outcomes 1 and 1 when measuring Πi and Πj,
and αðG; w⃗Þ is theweighted independence number ofGwith
vertex weight vector w⃗ (see Ref. [13] for the definition).
Our first result is the following.
Result 1.—For any quantum system of any finite

dimension d ≥ 3, there is a finite set of observables S ¼
fΠigni¼1 and a functional W such that, for any quantum
state ρ, WðS; ρÞ ¼ Q, and, if WðS0; ρ0Þ ¼ Q for a set of
observables S0 ¼ fΠ0

igni¼1 and a state ρ0 of full rank in
dimension D, then S0 and S are equivalent in the sense that
there is a unitary transformation U that, for all i,

Πi ⊗ 1d1 ⊕ Π�
i ⊗ 1d2 ¼ UΠ0

iU
†; ð2Þ

where 1d1 is the identity in dimension d1, with
d1 þ d2 ¼ D=d, Π�

i is the conjugate of Πi, ⊗ denotes
tensor product, ⊕ denotes direct sum, and U† is the
conjugate transpose of U. Moreover, W is a SI-C witness
since Q > C and

W ≤ C ð3Þ

is a state-independent noncontextuality inequality.
For the witnesses W of the form (1), C ¼ αðG; w⃗Þ. If

those d-dimensional Πi are real (rather than complex), then
Eq. (2) becomes

Πi ⊗ 1ðD=dÞ ¼ UΠ0
iU

†: ð4Þ

The practical consequence of Result 1 is that if, in an
ideal experiment with sequential measurements, a set of n
measurement devices (one for each observable), combined
in sequences as dictated by the form of W, yields W ¼ Q
for a state of full rank, then we can be sure that these
devices implement S [or an equivalent set in the sense of
Eqs. (2) or (4)]. Then, we will say that S enables CFR. The
case of nonideal experiments will be discussed later.
Proof.—The proof is based on identifying sets enabling

CFR in any dimension d ≥ 3. We will name the SI-C sets
using the initials of the authors and the number of projectors
in the set. For example, BBC-21 [41], CEG-18 [42], and
YO-13 [11]. In other cases, we use the full name rather than
the initial, as in Peres-24 [43]. In other cases, we use the
standard name, as in the Peres-Mermin square [44,45].
While the details of the proof are specific for each SI-C set, a
common step in all proofs is showing that the violation of a
full-rank state ρ0 implies the same violation for any state.
The proof starts by showing that, in d ¼ 3, the set of 21

rank-one projectors in Table I enables CFR. This set,
hereafter called BBC-21, was introduced in [41] and is
the smallest SI-C set of rank-one projectors requiring
complex numbers known. The proof that BBC-21 is unique
up to unitary transformations, which guarantees that con-
dition (i) for CFR holds, is in [13]. Using the weights in the
last row of Table I, the noncontextual bound of the witness
W defined in Eq. (1) is αðG; w⃗Þ ¼ 36, while, for any initial
quantum state, the value ofW is ϑðG; w⃗Þ ¼ 40. This proves
that BBC-21 also satisfies condition (ii) for CFR.
In d ¼ 4, we show that three related fundamental SI-C

sets enable CFR: (I) CEG-18 [42], which is the smallest KS
set [13] of rank-one projectors in any dimension (as proven
in [46]), (II) Peres-24 [43], which is the smallest complete
KS set (see Definition 4) of rank-one projectors known, and
(III) the Peres-Mermin square [44,45], which is the smallest
SI-C set of arbitrary self-adjoint operators (rather than
projectors) known. The proofs that these sets are unique
up to unitary transformations and the corresponding optimal
state-independent contextuality witnesses yielding the same
value for any state are in [13].
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Finally, for any finite dimension d ≥ 5, we prove (see
Ref. [13]) that each of the members of a family of SI-C sets
of rank-one projectors generated from Peres-24 using a
method introduced in [47] is unique up to unitary trans-
formations and has a SI-C witness producing the same
value for any initial state. ▪
While existing correlation-based certification methods

require preparing a state with a high overlap with a target
pure state, the SI-C sets that enable CFR can be certified
using any unspecified full-rank state, something that is
easier to prepare. A simple strategy is to let an arbitrary
state go through randomly chosen measurements [34],
resulting in a maximally mixed state. Another strategy is
to let the system interact with the environment, resulting in
a thermal state. Both types of states are of full rank.
Not all SI-C sets enable CFR. For example, Peres-33

[43], which is the KS set of rank-one projectors in d ¼ 3
with the smallest number of bases known, is not unique up
to unitary transformations. Interestingly, YO-13 [11], which
is the SI-C set with smallest number of rank-one projectors
in any dimension (as proven in [48]) and is a subset of
Peres-33, enables CFR if two additional conditions are
satisfied: (I’) The relations of orthogonality between the
elements S0 are the same as the relations of orthogonality
between the elements S, and (II’) for ρ0, the probabilities are
normalized for every set of mutually orthogonal projectors
summing up to the identity. This is shown in [13]. Both (I’)
and (II’) can be experimentally tested (as in [34]).
Robustness.—The possibility of CFR of SI-C sets is a

prediction of quantum theory. Now the question is whether
this prediction can be tested in actual experiments or it
requires idealizations that cannot be achieved in realistic
experiments such as the requirement of perfectly sharp and
compatible measurements for all pairs of compatible observ-
ables in the SI-C set. In other words, the question is whether
CFR is robust against experimental imperfections.
Answering this question requires an additional analysis

based on semidefinite programming whose size is related
to the size of the SI-C sets. Here, we have performed this
analysis for three of the SI-C sets, in dimensions 3 and 4,
that we have proven that enable CFR. In all cases, the
analysis was performed on a laptop computer and the

computational execution time was less than 1 h. The
analysis of the robustness of the CFR of the other SI-C
sets can be carried out using higher computational power.
Our result here is that the CFRs based on BBC-21,

CEG-18, and Peres-24 are robust. We will also show that
the CFR of YO-13 is robust under an extra assumption. Our
result requires introducing some definitions.
Definition 1.—A set of projectors fΠig is said to be a

ðθ; ϵÞ realization of a SI-C set with respect to a contex-
tuality witness W of type (1) if, for all states jψi,

Xn

i¼1

wihψ jΠijψi ≥ θ > αðG;wÞ; ð5aÞ

hψ jΠiΠjΠijψi ⩽ ϵ; ð5bÞ

whenever i and j are adjacent in G (i.e., whenever the
corresponding projectors are orthogonal).
The conditions in Eqs. (5a) and (5b) are related to the

sum of probabilities
P

i wiPi and joint probability Pij in
Eq. (1). In the ideal case, θ ¼ Q (defined in Result 1), and
ϵ ¼ 0, which implies that the quantum value ofW is Q. As
θ is close enough to Q and ϵ is close enough to 0, the
projectors fΠig have the same rank. See Ref. [13] for
details.
Definition 2.—A noncontextuality inequality of the

form (1) provides an ðϵ; rÞ-robust CFR of a ðQ; 0Þ
realization fΠig of a SI-C set, if, for any (Q − ϵ, ϵ)
realization fΠ0

ig of the SI-C set, there is an isometry Φ
such that

jΦðΠiÞ − Π0
ij ≤ OðϵrÞ: ð6Þ

Result 2.—The contextuality witnessesW of the form (1)
for BBC-21, CEG-18, Peres-24, and YO-13 used in Result 1
provide ðϵ; 1=2Þ robustness when ϵ is smaller than 0.132,
0.134, 0.177, and 0.208, respectively. For YO-13, the proof
requires the extra assumption that the probabilities of every
three mutually orthogonal projectors sum 1.
For more details on the proof, see Ref. [13].

TABLE I. BBC-21. Each column vi corresponds to one observable represented by the projector jviihvij. The
column vij gives the components of jvii (unnormalized). x̄ ¼ −x, q ¼ e2πi=3, and g ¼ q2. Compatible observables
correspond to orthogonal vectors. The last row contains optimal weights wi for a SI-C witness W of the form (1).
The weights wij in (1) can be chosen in any way that satisfies wij ≥ maxfwi; wjg.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

vi1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
vi2 1 1 1 0 0 0 1̄ q̄ ḡ 0 1 0 1 q g 1 q g 1 q g
vi3 1̄ q̄ ḡ 1̄ q̄ ḡ 0 0 0 0 0 1 1 g q q 1 g g q 1

wi 4 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7
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Any witnessW of the form (1) can be expressed with the
joint probabilities of the outcomes of two sequential
measurements from fAjg. From the observed values sat-
isfying conditions related to the ideality and the orthogon-
ality relations of the projectors, one can certify the projectors
and the measurements Ai. Moreover, when the experimental
value of W is close enough to the quantum value, the
robustness of the CFR is also ensured. See Ref. [13] for more
details.
Bell self-testing and CFR.—Bell self-testing [3] is the

task of certifying quantum states and measurements using
only the statistics of Bell experiments. One advantage of
Bell self-testing with respect to CFR is that the former does
not require projective measurements. One disadvantage,
however, is that Bell self-testing requires spacelike sepa-
ration between the tests. Therefore, an interesting question
is whether SI-C sets that allow for CFR can be Bell self-
tested and, if so, what is the relation between Bell self-
testing and CFR. To address these questions, the following
definitions will be useful.
Definition 3.—(Generalized KS set) A generalized

Kochen-Specker (KS) set is a set of projectors of arbitrary
rank (not necessarily of rank-one as it is the case in a KS
set [49]) which does not admit an assignment of 0 or 1
satisfying that: (I) two orthogonal projectors cannot both
be assigned 1, (II) for every set of mutually orthogonal
projectors summing up to the identity, one and only one of
them must be assigned 1.
Definition 4.—(Complete KS set) The complete KS set

associated to a generalized KS set S is the set obtained by
adding to S the projectors 1 − Πi − Πj for every pair of
orthogonal projectors ðΠi;ΠjÞ in S that does not belong to a
complete basis.
For example, Peres-24 is a complete KS set, but CEG-18

and Peres-33 are not (BBC-21 and YO-13 are not KS sets).
A complete KS set enables CFR if it satisfies properties
(i) and (ii).
Now we need a way to produce Bell nonlocality using a

complete KS set. For that aim, we will define the following
nonlocal game.
Definition 5.—(Context-projector KS game [16,17,21])

In each round of the game, a referee gives to one of the
players, Alice, one of the contexts (i.e., a set of commuting
projectors summing up the identity) of a complete KS set S
and asks her to output one of the projectors of this context.
In the same round, the referee gives to one spatially
separated player, Bob, one of the projectors of the same
context and asks him to output 1 or 0. Alice and Bob win
the round either if Alice outputs the projector given to Bob
and Bob outputs 1, or if Alice outputs a projector different
than the one given to Bob and Bob outputs 0.
This is a game that cannot be won with probability 1

with classical resources and no communication, but that
can be won with probability 1 if the parties share copies of

a qudit-qudit maximally entangled state with d ≥ 3 and
measure a complete KS set in dimension d.
Now, we can address the question of whether the SI-C

sets that allow for CFR can be Bell self-tested.
Result 3.—The projectors of a complete KS set can be

Bell self-tested if and only if the KS set enables CFR.
The proof is in [13]. Here, we will focus on some

implications of this result. One is that Bell self-testing and
CFR can be accomplished simultaneously in an experiment
that combines Bell and sequential tests [50–52]. Consider
two spatially separated parties, Alice and Bob 1, sharing
copies of a qudit-qudit maximally entangled state and
performing local measurements of the projectors of a
complete KS set S. In addition, consider a third party,
Bob 2, that receives the system that Bob 1 has measured
(we assume that Bob 1’s measurements are nondemolition
measurements [34,53]). Suppose that Bob 2 measures
elements of S on this system. Then: (a) The Alice-Bob 1
statistics can Bell self-test S in Alice’s and Bob 1’s sides.
(b) The Bob 1-Bob 2 statistics enable CFR of S in Bob 1’s
and Bob 2’s sides (and the Alice-Bob 1 Bell self-test can
guarantee that Bob 1’s input state is of full rank). (c) The
Alice-Bob 2 statistics conditioned to that Bob 2’s meas-
urement is compatible to Bob 1’s can Bell self-test S in
Alice’s and Bob 2’s sides. This allows for the simultaneous
certification of Bob 1’s S by two different methods and
opens new possibilities.
Conclusions and future directions.—In this Letter, we

have presented three results that push the field of certifi-
cation of quantum processes based only on correlations
beyond its established limits. Results 1 and 2 allow us to
circumvent a conceptual limitation of existing methods,
namely, the need of targeting specific pure states. We have
proven that this is not necessary: for any quantum system
of any finite dimension d ≥ 3, there are sets of quantum
observables that can be certified using any full-rank
quantum state. This “certification with any full rank state”
offers interesting possibilities. For example, suppose that
the same preparation is used to certify via CFR two sets of
observables: one of them in dimension d1 and the other in
dimension d2. This automatically certifies via CFR that the
dimension of the system is lower bounded by the lowest
common denominator of d1 and d2. This provides a method
to certify quantum systems of high dimensions, something
that is difficult in a DI way [54,55]. Moreover, in principle,
CFR becomes more useful as the dimension grows, since
preparing a full-rank mixed state is easier than preparing a
state with a high overlap with a pure target state.
Result 3 pushes the field in a different sense. It shows

that, for a general class of sets of observables, CFR is
possible if and only if Bell self-testing is possible. This
indicates that there may be a general unified framework
for certification based solely on correlations, so that all
existing methods can be viewed as particular cases. The
precise characterization of this framework constitutes an
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interesting challenge. On the other hand, Result 3 shows
that there are sets of observables that can be simultaneously
Bell self tested (using Alice-Bob 1 correlations) and
certified via CFR (using Bob 1–Bob 2 correlations).
This is interesting as it may lead to a robust method for
self-testing Lüders processes [56,57] in any finite dimen-
sion d ≥ 3 (which is where observables represented by
rank-one projectors have one outcome whose quantum
post-measurement state depends on the input state). In the
framework of general probabilistic theories, Lüders proc-
esses correspond to “ideal (or sharp) measurements” [58]:
processes that yield the same outcome when repeated and
are minimally disturbing (only disturb incompatible
observables). The existence of ideal measurements is
“one of the fundamental predictions of quantum mechan-
ics” [57]. The DI certification of ideal measurements in
arbitrary (finite) dimension would require the DI certifi-
cation of the corresponding quantum instruments (which
capture both the classical outputs and the corresponding
quantum post-measurement states [59–61]). Previous
works have explored the DI [62] and semi-DI [63]
certification of instruments corresponding to nonideal qubit
measurements. The DI certification of ideal measurements
would operationally “bridge the gap between general
probabilistic theories and the DI framework” [64], blurring
the boundaries between three different approaches for
understanding quantum theory: DI, general probabilistic
theories, and general Bayesian theories [65], where ideal
measurements are central. Future research should go in
these directions. Additional Refs. [66–70] are cited in the
Supplemental Material [13].
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