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The need for structuring on micrometer scales is abundant, for example, in view of phononic
applications. We here outline a novel approach based on the phenomenon of active turbulence on the
mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically
stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a
periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size
leads to regular spatial organization of these objects. Our approach opens a new path toward
functionalization through patterning of thin films and membranes.
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Structuring materials on micrometer and submicrometer
scales is of central importance to various types of pro-
spective applications of functionalized components, such as
shape-changing nematic elastomers [1–4] or phononic
metamaterials [5]. The latter provide, for instance, acoustic
band gaps [6–8]. This function relies on spatially organ-
izing colloidal particles on scales responsive to acoustic
excitations. Generally, such structuring requires measures
imposed from outside. We here introduce a strategy that
facilitates intrinsic patterning through nonequilibrium
effects. It relies on self-supported regular organization
of vortices in an otherwise turbulent suspension of
active microswimmers. Key to this mechanism is a shear-
thickening carrier fluid.
Suspensions of microswimmers are a subclass of active

matter [9–13]. The interplay with the surrounding fluid
determines both the swimming behavior of individual
swimmers and their mutual interactions. These nonequili-
brium systems are amenable to structure formation. For
example, bacterial suspensions develop turbulent states,
swirling, and vortex formation [14–19] despite prevailing
low-Reynolds-number conditions. Being able to control or
switch between different patterns is important for possible
applications such as microscale extraction of work [20,21],
microfluidic mixing [22,23], or cargo transport [24–26]. In
particular, regular mesoscale patterning is eminent when
creating functionalized materials. Previous experimental
and theoretical studies have shown that external fields [27]
or geometrical constraints such as coupled flow chambers
[28–30] or small obstacles [31–34] can stabilize regular
vortex patterns [31,33,35]. However, it is desirable to
achieve such regular structure formation intrinsically,
without the need of external intervention.
Many previous considerations on microswimmers and

their collective behavior assume the solvent to be
Newtonian, although many biological fluids actually

exhibit non-Newtonian rheology or viscoelasticity. Few
recent exceptions deal with the effects of viscoelasticity
[36–41]. Non-Newtonian behavior, such as shear thicken-
ing and shear thinning, have been addressed [42–47], but
only a limited number of studies explore resulting collec-
tive dynamics [48–55]. The impact of the non-Newtonian
effect of shear thickening on the complex pattern formation
in active fluids has not been explored so far.
Here, we turn to this open question, based on previous

descriptions of the dynamics in suspensions of active
microswimmers [56–59]. Past investigations correctly pre-
dicted the main features of mesoscale turbulence [60], a
dynamic state of vortex formation on an intermediate
length scale much larger than the single-swimmer scale
[17,60]. We now incorporate non-Newtonian effects by a
viscosity that increases with local shear rate. Our results
show that such shear thickening stabilizes regular struc-
tures, specifically centered rectangular latticelike patterns
consisting of elongated vortices. Remarkably, geometrical
constraints or other externally applied means of control are
not necessary for this dynamic rotational symmetry break-
ing associated with anisotropic regular pattern formation.
Moreover, introducing passive particles larger than the
active swimmers leads to their spatial organization and
regular patterning according to the vortex patterns. In this
way, we reveal a novel path toward structuring and
functionalization of thin metamaterials.
We describe the dynamics of the active suspension by a

generalized, incompressible Navier-Stokes equation for the
overall velocity field vðx; tÞ of the entire suspension,

∂tv þ v ·∇v ¼ −∇p̃þ∇ · σ̃; ∇ · v ¼ 0; ð1Þ

rendering the approach Galilei invariant. Here, the constant
density ρ is absorbed into the pressure p (p̃ ¼ p=ρ) and the
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stress tensor σ (σ̃ ¼ σ=ρ). Following recent achievements
to include the energy input by the microswimmers [56–58],
we expand the stress tensor in gradients of the deformation
rate Σ ¼ ½ð∇vÞ þ ð∇vÞ⊤�=2,

σ̃ ¼ ðΓ0 þ Γ2∇2 þ Γ4∇4Þ½ð∇vÞ þ ð∇vÞ⊤�; ð2Þ

where ⊤ marks the transpose. Often, the active stress
includes orientational order parameter fields, which are
governed by additional dynamic equations [11,18]. In our
case, the orientational order parameters are “slaved” to the
suspension velocity [58]. In principle, one can include
terms ∝ vv − jvj2I=d, where I is the unit tensor and d
spatial dimensionality. However, these terms would only
lead to a rescaling of the nonlinear advection term and an
additional contribution to the pressure [56]. Equation (2)
captures essential experimental observations on active sus-
pensions, for example, length scale selection and emergence
of turbulent vortex patterns [56]. Very good agreement with
both bacterial microswimmers and adenosine triphosphate-
driven microtubular networks has been demonstrated [58].
Recent work on passive suspensions showed that higher-
order gradients of the suspension-averaged velocity can
emerge in the effective stress tensor within a rigorous
derivation [61], which further supports our approach.
Positive values of the coefficients Γ0 and Γ4 ensure

asymptotic stability at long and short wavelengths, respec-
tively [56]. In the passive case, Γ4 ¼ 0, Γ2 ¼ 0, and Γ0 ¼ ν,
introducing the kinematic viscosity ν. In the active case, we
adopt Γ0 ¼ ν, while Γ2 can show either sign. For Γ2 < 0,
there is no active energy input and the quiescent state
vðx; tÞ ¼ 0 is stable. Instead, for Γ2 > 0, active stresses set
in, which can excite intermediate wavelengths [56]. Thus,
Γ2 characterizes the strength of activity. When increasing
Γ2 >

ffiffiffiffiffiffiffiffiffiffi
4νΓ4

p
, linear stability analysis yields a finite-wave-

length instability of critical wave number kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2=ð2Γ4Þ

p
.

Further increasing Γ2, a band of unstable modes emerges,
indicating wave numbers at which activity pumps energy
into the system. Similarly to driven Navier-Stokes fluids
[62], the nonlinear advection term v ·∇v relates to turbu-
lence and energy transport between wave numbers.
However, driving in our case is internal, due to the active
energy input by the microswimmers. Resulting balances of
active energy input and dissipation lead to statistically
stationary states, in line with main features of experimental
observations on bacterial suspensions [56]. Recent studies
employing a similar description suggest a transition between
different spectral scaling regimes in active turbulence upon
an increase of activity [63]. In this context, we here focus on
themildly active regime, see Ref. [63], where the statistics of
velocity increments follows a Gaussian distribution.
Shear thickening of the carrier liquid is described

by a viscosity increasing with local shear rates γ̇ðxÞ. We
consider a so-called power-law fluid [64–66] of constant
zero-shear viscosity ν0,

νðxÞ ¼ ν0 þ ν0

�
γ̇ðxÞ
γ̇2

�
n−1

; ð3Þ

where γ̇ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΣðxÞ∶ΣðxÞp

. The exponent n determines
how the viscosity νðxÞ increases with local shear rate γ̇ðxÞ.
γ̇2 is a reference shear rate, indicating when the viscosity
reaches 2ν0.
We now rescale lengths by k−1c , times by ðk2cν0Þ−1, and

thus velocities by kcν0. As a result, Eq. (1) becomes

∂tv þ v ·∇v ¼ −∇p̃þ∇ · ð2νΣÞ þ að2∇4v þ∇6vÞ; ð4Þ

where ν ¼ 1þ ð ffiffiffiffiffiffiffiffiffiffiffiffi
2Σ∶Σ

p
=γ̇2Þn−1. In our incompressible

system, p̃ merely acts as a Langrange multiplier ensuring
∇ · v ¼ 0. The parameter a ¼ Γ2

2=ð4ν0Γ4Þ sets the strength
of active energy input relative to the zero-shear viscosity ν0.
For a < 1, the isotropic, quiescent state vðx; tÞ ¼ 0 is
stable, implying that the active energy input does not
suffice to overcome viscous dissipation. Thus, pattern
formation is not observed. Conversely, for a > 1, the
system forms flow patterns characterized by a specific
length scale set by the fastest-growing mode km. Close to
the transition, km ¼ kc ¼ 1, yielding a length scale of
Λc ¼ 2π=kc. For a ¼ 0, we recover the passive Navier-
Stokes equation for non-Newtonian, shear-thickening
behavior.
We employ a pseudo-spectral method to solve Eq. (4) in

a two-dimensional system with periodic boundary con-
ditions starting from random initial values; for details, see
the Supplemental Material [67], which includes Refs. [68–
73]. The system size is set to 48π × 48π, much larger than
the critical length scale Λc ¼ 2π. Varying the values of
activity a, power-law exponent n, and reference shear rate
γ̇2, we investigate the emerging patterns. Examples are
illustrated in Fig. 1, where snapshots of the vorticity
field ω ¼ ð∇ × vÞz are shown for a ¼ 1.1, n ¼ 3, and
varying γ̇2.
For high reference shear rate γ̇2, that is, closer to

Newtonian behavior, the system develops a turbulent state,
similar to the case without shear thickening [56–58]; see
Fig. 1(c). However, when γ̇2 is low, a rather regular state
emerges, which can be characterized as a centered rec-
tangular lattice of vortices. Figure 1(a) shows the vorticity
field in this state. The vortices become elongated along a
common axis, displaying an aspect ratio of about 3. For
intermediate values of γ̇2, the system develops a state of
still clearly visible anisotropy of the vortices, see Fig. 1(b),
yet not stationary. Instead, numerous defects and dynamic
reorganization occur.
To further characterize the observed spatiotemporal

patterns, we first calculate the correlation time τ [67],
which quantifies how quickly the velocity field reorganizes.
Figure 2(a) shows τ in a-γ̇2 space for different values of n.
Consistent with our previous observations, we find that τ
is small for large values of both a and γ̇2, indicating a

PHYSICAL REVIEW LETTERS 132, 138301 (2024)

138301-2



turbulent state. Decreasing either a or γ̇2 increases τ, and
the dynamics becomes slower until the emerging patterns
settle into a stationary state for very small values of a and
γ̇2. Since the system does not rearrange anymore, τ
diverges. Besides, τ tends to decrease for increasing n,
so that smaller n stabilize the regular elongated vortex
structure. For comparison, τ as a function of a is shown on
the right-hand side of Fig. 2(a) for a Newtonian suspension
without shear thickening (ν ¼ 1). In this case, larger values
of a lead to an increased input of active energy into the
system and, thus, to a more turbulent state.
In Figs. 1(a) and 1(b), the elongated vortices on average

align along a common axis. Thus, we determine the global
nematic order parameter q for orientational order of elon-
gated vortices [67]. jqj ¼ 0 for a flow field of uniformly
distributed vortex orientations, whereas jqj ¼ 1 for com-
pletely ordered systems, such as in Fig. 1(a). Figure 2(b)
shows jqj for different values of n. For smaller reference

shear rate γ̇2, we indeed find that the elongated vortices are
aligned along a common axis n; see Figs. 1(a) and 1(b).
Thus, shear thickening does not only lead to local vortex
elongation, but also to spontaneous overall rotational
symmetry breaking. The system exhibits global nematic
order even for values of γ̇2 associated with defects and
reorganization as in Fig. 1(b). For developed turbulence, jqj
approaches zero; see the right-hand side of Fig. 2(b). Again,
we find that increasing n reduces stabilization of the
elongated vortex pattern and thus suppresses jqj. More-
over, the impact of activity a on stabilization seems to
diminish.
Conceptually, the shear-thickening properties of the

suspension provide a saturation mechanism for the growing
vortex patterns that does not rely on the turbulent energy
transfer to larger scales and subsequent dissipation. As a
result, regular structures are stabilized. To shed more
light on these effects, we determine associated amplitude

(a)

(b)

FIG. 2. Characteristic quantities as a function of a and γ̇2 for different values of n. (a) Correlation time τ on a log scale. (b) Nematic
order parameter jqj for the elongated vortices. High nematic order for small values of γ̇2 signifies a globally ordered vortex structure with
broken rotational symmetry. The gray circles in the plots for n ¼ 3 indicate the parameter values where the snapshots shown in Fig. 1 are
taken. The column on the right-hand side includes the Newtonian case (ν ¼ 1) for comparison.

(a) (b) (c)

FIG. 1. Snapshots of the vorticity field ωðx; tÞ at a ¼ 1.1 and n ¼ 3 at arbitrarily chosen times t for different values of the reference
shear rate: (a) γ̇2 ¼ 0.1, (b) γ̇2 ¼ 0.9, and (c) γ̇2 ¼ 2.5. Arrows denote the velocity field v. Both quantities are rescaled for visualization
purposes. (a) For very small γ̇2, the flow field settles into a stationary vortex lattice, where vortices are elongated along the director n
shown as the dashed line in the inset. The structure can be represented by two wave vectors forming an angle φ ¼ π=4 (inset). For larger
γ̇2, the flow field becomes increasingly irregular. In (b), the vortices are still visibly aligned along a common director n (inset), whereas
the rotational order is lost in (c). The size of the snapshots is 16π × 10π.
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equations. The stationary, centered rectangular lattice close
to its emergence forms an orthorhombic state that is
represented by two modes of complex amplitudes A1

and A2 and wave vectors k1 and k2 [74]. As inferred
from the linear stability analysis outlined above, the
isotropic state becomes unstable to the growth of pertur-
bations of wave vectors jkj ¼ kc ¼ 1 when activity is
increased above a ¼ 1. Close to this critical point, we
assume the length scale Λc ¼ 2π=kc to dominate the
emerging patterns. We write the wave vectors of the modes
ki (i ¼ 1, 2) as ki ¼ kcðcosφi; sinφiÞ. Without loss of
generality, we set one of the angles to zero, φ1 ¼ 0. Then
φ2 ¼ φ determines the relative angle between the wave
vectors. Thus, vortex structures as in Fig. 1(a) are para-
metrized by

vx ¼ A2 sinðφÞei½cosðφÞxþsinðφÞy� þ c:c:;

vy ¼ −A1eix − A2 cosðφÞei½cosðφÞxþsinðφÞy� þ c:c:; ð5Þ

satisfying incompressibility, where c.c. denotes complex
conjugates.
Inserting Eq. (5) into Eq. (4), we restrict ourselves to

values n ¼ 3 and 5 to make analytical progress; see also
Ref. [67]. Using symbolic computation software [75] and
collecting terms ∼eix and ∼ei½cosðφÞxþsinðφÞy�, we find for
n ¼ 3 [67]

∂A1

∂t
¼ða−1ÞA1−

A1

γ̇22
f3jA1j2þ2jA2j2½2þ cosð4φÞ�g;

∂A2

∂t
¼ða−1ÞA2−

A2

γ̇22
f3jA2j2þ2jA1j2½2þ cosð4φÞ�g: ð6Þ

Assuming jA1j ¼ jA2j ¼ jAsj, the nontrivial amplitude of
the stationary solution becomes

jAsj ¼ γ̇2

�
a − 1

7þ 2 cosð4φÞ
�
1=2

: ð7Þ

A linear stability analysis yields the resulting decay and/or
growth rates,

λ− ¼ −2ða − 1Þ; λþ ¼ 2ða − 1Þ½1þ 2 cosð4φÞ�
7þ 2 cosð4φÞ ; ð8Þ

where only λþ can become positive for a > 1 and, thus,
determines stability.
Whether the stationary solution is stable is determined by

the angle φ; see Fig. 3(a). In particular, perpendicular
configurations of φ ¼ π=2 are unstable (λþ > 0), whereas
configurations of φ ¼ π=4 are stable (λþ < 0). These
analytical results confirm our numerical observations and
explain the geometry of the vortex lattice. Therefore, shear
thickening leads to skewed lattices of φ ≠ π=2 and vortex
elongation along a common axis n. In Fig. 1(a), n is

inclined by an angle of 3π=8 from each wave vector.
The case of n ¼ 5 [67] leads to similar results, yet with a
slightly narrower region of stability; see Fig. 3(a).
Because of the nonlinear nature of advection, destabi-

lization becomes more important with increasing amplitude
of the emerging patterns. To explore this point, we plot the
stationary amplitude according to Eq. (7) for n ¼ 3 and for
n ¼ 5 [67] in Fig. 3(b). It grows with increasing activity a
and reference shear rate γ̇2. This is caused by pattern
saturation being mediated via shear-thickening effects and
thus becoming stronger when these set in earlier, that is, for
smaller γ̇2. Comparing Fig. 3(b) with the correlation times τ
displayed in Fig. 2(a) adds to this point. Increasing a or γ̇2
leads to faster dynamics of the flow field and thus to a more
turbulent state. The dependence of As on the reference shear
rate γ̇2 is linear in Eq. (7). This implies substantial impact of
variations in γ̇2 on the emerging spatiotemporal structures,
in line with the results for the correlation time τ and the
degree of nematic order jqj shown in Fig. 2 for different
values of n.
As an immediate perspective, the emerging regular

vortex patterns facilitate the spatial organization of objects
within the system. To demonstrate this effect, we consider
the dynamics of passively advected particles of intermedi-
ate size and perform additional simulations using a sim-
plified form of the Maxey-Riley equation [69,71] coupled
to the flow field obtained via Eq. (4); see Ref. [67] for
details. As is known from particle-laden flows [69–72],
passive objects tend to accumulate in certain areas of the
flow if their density ρp is different from that of the carrier
fluid ρs. Lighter objects cluster within vortices, whereas
heavier objects are ejected from them [73]. The density
ratio is characterized by the factor R ¼ 2ρs=ðρs þ 2ρpÞ.

(a)

(b)

FIG. 3. Results obtained from the amplitude equations.
(a) Maximum growth rate of perturbations with respect to the
stationary solution for n ¼ 3 [Eq. (8)] and n ¼ 5 [67] as a
function of the angle φ between the two modes representing the
vortex pattern. (b) Amplitude jAsj of the stationary solution at
φ ¼ π=4 as a function of a and γ̇2 for n ¼ 3 [Eq. (7)] and for
n ¼ 5 [67].
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We further introduce the Stokes number St, which mea-
sures the characteristic timescale of the particle dynamics
relative to that of the flow. Under present scaling, St is
defined via St ¼ 8π2d2=ð9Λ2

cÞ, which grows quadratically
with the particle diameter and vanishes for point particles
[67]. These effects in combination with the self-supported
regular pattern formation of our active shear-thickening
carrier fluid can be used to spatially organize objects into
regular periodic structures; see Fig. 4 for snapshots from
the numerical simulations at St ¼ 0.033 and different
density ratios. Thus, intrinsic pattern formation in shear-
thickening active suspensions opens a new strategy of
generating sheets of functionalized metamaterials based on
regular positional structuring of embedded objects on the
microscale [6,8].
To summarize, we reveal that shear thickening is able to

reorganize the flow field in active suspensions and intrinsi-
cally stabilizes regular vortex patterns in an otherwise
turbulent state. Elongation arises for the vortices along a
common axis. In contrast to other related observations on
suspensions of active microswimmers, the patterns here are
intrinsically stabilized by the shear-thickening carrier liquid
and do not require external stabilization via geometrical
constraints, such as arrangements of small obstacles
[31–35], systems of coupled flow chambers [28–30], or
substrate friction [76]. The effect can therefore be employed
to intrinsically structure functionalized components on the
micrometer scale. Changing the properties of the micro-
swimmers, for instance, self-swimming speed or body size,
allows us to tune the intrinsic selection of length scales [17]
and thus the lattice constant of the stabilized patterns.
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