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Floquet insulators are periodically driven quantum systems that can host novel topological phases as a
function of the drive parameters. These new phases exhibit features reminiscent of fermion doubling in
discrete-time lattice fermion theories. We make this suggestion concrete by mapping the spectrum of a
noninteracting ð1þ 1ÞD Floquet insulator for certain drive parameters onto that of a discrete-time lattice
fermion theory with a time-independent Hamiltonian. The resulting Hamiltonian is distinct from the
Floquet Hamiltonian that generates stroboscopic dynamics. It can take the form of a discrete-time Su-
Schrieffer-Heeger model with half the number of spatial sites of the original model, or of a ð1þ 1ÞD
Wilson-Dirac theory with one quarter of the spatial sites.
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Zero-energy fermionic modes, or zero modes, are among
the earliest manifestations of topology in quantum many-
body theory. In systems with a gapped bulk, they appear
localized at topological defects like solitons and vortices, or
as dispersive modes at boundaries between phases with
different bulk topological invariants [1]. They can carry
fractional charges under global symmetries and manifest
fractional or non-Abelian statistics when braided [2–7], and
their existence enforces degeneracies in the many-body
spectrum [8,9].
Quantum systems driven periodically in time, known as

Floquet systems, furnish intrinsically nonequilibrium gen-
eralizations of topological and conventionally ordered
phases [10–21]. Despite lacking energy conservation, they
retain a notion of eigenstates and eigenvalues when
observed at “stroboscopic times” that are integer multiples
of the driving period T. Instead of an energy spectrum
which can, in principle, be unbounded in the thermody-
namic limit, stroboscopic dynamics and eigenstates are
characterized by a bounded spectrum of quasienergies
−π=T ≤ ϵ < π=T that are only conserved modulo
ð2π=TÞ. The periodic nature of quasienergy furnishes a
generalization of zero modes. For example, fermionic
Floquet systems known as Floquet insulators can exhibit
localized “π modes” whose existence implies a “π pairing”
between many body states at quasienergy ϵ and ϵþ ðπ=TÞ
[22–27].
Another setting in which π modes arise is spacetime

lattice regularizations of fermionic quantum field theories.
In particular, discretizing the Dirac operator on a spacetime
lattice leads to the so-called fermion doubling problem,
where the total number of fermionic degrees of freedom
increases by a factor of 2D, where D is the spacetime
dimension [28,29]. The extra modes, known as “doublers,”
are undesirable and several methods, including Wilson,

Kogut-Susskind, and domain-wall fermions [30–35], are
commonly used to dispense with them. Nevertheless, it is
natural to ask whether the doubler modes associated with
zero modes, which occur at frequency ðπ=τÞ, where τ is the
temporal lattice spacing, are related to the π modes that can
appear in Floquet insulators.
In this Letter, we answer this question affirmatively for a

particular ð1þ 1ÞD Floquet-insulator model. Specifically,
we show that the quasienergy spectrum of a continuous-
time Floquet model of spinless complex fermions can be

FIG. 1. Schematic of the mapping between stroboscopic
Floquet dynamics and time-independent lattice Hamiltonians.
The spectrum of the stroboscopic dynamics corresponding to
Eq. (6), shown in (a), can be mapped onto that of a discrete-time
Su-Schrieffer-Heeger (b) or Wilson-Dirac (c) theory. The number
of spatial sites in (b) is halved with respect to (a) to accommodate
the additional degrees of freedom due to fermion doubling. The
number of sites are further halved in (c) to accommodate the
spinful nature of the Wilson-Dirac fermions (depicted via arrows
inside the lattice sites).
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mapped directly onto the spectrum of discrete-time lattice
fermions with a time-independent Hamiltonian. The lattice
spacing of this discrete time theory equals the driving time
period T of the Floquet system. The mapping is made easier
by the observation that the Dirac equation takes the form of
a Schrödinger equation for the corresponding fermion
Hamiltonian. The lattice fermion model can take the form
of a Su-Schrieffer-Heeger (SSH) model with half the spatial
lattice sites of the Floquet model, or of a Wilson-Dirac
model with one quarter of the sites (see Fig. 1 for a
schematic of the mapping). Furthermore, for appropriately
chosen solutions of the mapping between spectra, the phase
diagrams of the Floquet and lattice models match. In
particular, the topological phase of the Floquet model,
which exhibits localized zero and π modes with open
boundary conditions, coincides with the topological phase
of the related lattice Hamiltonians, where π modes appear
as doublers of zero modes. While previous studies [36,37]
have used Floquet systems to provide new perspectives on
lattice fermion doubling, here we focus on exposing a direct
correspondence between the two.
Lattice fermion doubling.—A continuous-time free-

fermion theory in Minkowski space with Hamiltonian H
has the fermion or Dirac operator γ0ði∂t −HÞ from which
we can extract the Schrödinger operator i∂t −H. The
eigenvalues of this operator are � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 − E2

p
, where p0

is the Fourier variable conjugate to time t and E are the
eigenvalues of H [38]. The zeroes of these eigenvalues at
p0 ¼ E correspond to poles of the fermion propagator
ði∂t −HÞ−1γ−10 . Discretizing time in this theory leads to
fermion doubling [28,29]. To see this, let τ be the lattice
spacing in the time direction. The poles of the discrete-time
theory now satisfy ð1=τÞ sinðp0τÞ ¼ E, which leads to two
solutions:

p0 ¼
1

τ
sin−1ðEτÞ and p0 ¼

π

τ
−
1

τ
sin−1ðEτÞ: ð1Þ

Thus, for every pole of the continuous-time propagator
there are two poles of the discrete-time propagator [39–42].
In particular, for a zero mode of the continuous-time theory,
the discrete-time theory has modes at p0 ¼ 0 and
p0 ¼ ðπ=τÞ; the new π mode arises purely due to time
discretization.
A corresponding phenomenon is also observed in

Euclidean-time lattice field theory [43,44]. There, the
Schrödinger operator in continuous time has eigenvalues
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ E2

p
, which, unlike the Minkowski theory, van-

ishes only at p0 ¼ E ¼ 0. In this case, upon discretizing
time, fermion doubling manifests itself as a degeneracy of
Schrödinger eigenvalues. For instance, any eigenstate
jp0; Ei with eigenvalue ð1=τÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðp0τÞ þ E2

p
has a part-

ner jðπ=τÞ − p0; Ei with the same eigenvalue. In congru-
ence with the Minkowski-space analysis, if the continuous-
time fermion propagator has a pole at p0 ¼ E ¼ 0, then

there is another pole at p0 ¼ π=τ. More interestingly, the
states jð1=τÞsin−1ðEτÞ; Ei, which correspond to the energy
eigenstates of H, have the same spatial profiles in the posi-
tion eigenbasis as jðπ=τÞ − ð1=τÞsin−1ðEτÞ; Ei. Therefore,
if H has a spatially localized zero mode, the corresponding
discrete-time Schrödinger equation has two solutions with
the same spatial profile.
In this Letter, wewill consider real-time (i.e.,Minkowski)

theories as opposed to imaginary-time (Euclidean) ones, as
the comparison between the Floquet and lattice spectra is
more natural for the former. However, there is no funda-
mental obstruction to performing a similar analysis for
Euclidean theories, and such an approach may be desirable
when generalizing beyond the case of noninteracting fer-
mions, which is our focus here.Wewill briefly mention how
the comparison between Floquet systems and lattice fer-
mions inMinkowski spacetime can be adapted for Euclidean
spacetime lattices.
Floquet insulator model.—As a simple example of a

Floquet insulator, we consider a continuous-time ð1þ 1ÞD
model on a spatial lattice of 2N sites defined by the
evolution operator

UðtÞ ¼
�
e−iH0t for 0 < t < t0
e−iH1ðt−t0Þe−iH0t0 for t0 ≤ t < t0 þ t1

; ð2Þ

with

H0 ¼ 2
XN−1

j¼0

ða†2ja2jþ1 þ H:c:Þ

H1 ¼ 2
XN−1

j¼0

ða†2jþ1a2jþ2 þ H:c:Þ; ð3Þ

where ai is a fermion annihilation operator on site
i ¼ 0;…; 2N − 1. Unless otherwise specified, we consider
periodic boundary conditions (PBC) such that a2N ≡ a0.
The Hamiltonians in Eq. (3) are the “trivial” and “topo-
logical” parts of the (static) SSH model [2,51],

HSSH ¼ u
2
H1 þ

v
2
H0: ð4Þ

The energy spectrum of this model with PBC is given by

ESSHðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ 2uv cosð2kÞ

q
; ð5Þ

where 0 ≤ k < π is the crystal momentum and we have set
the spatial lattice spacing to 1. The SSH model has a
symmetry-protected topological (SPT) and a trivial phase
that have identical bulk spectra. The two gapped phases can
be distinguished by their energy spectra in open boundary
conditions (OBC): in the SPT phase there are two spatially
localized zero modes pinned to the middle of the energy
gap, one at each end of the chain, while in the trivial phase
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there are none. Expanding the model around k ¼ ðπ=2Þ
yields a Dirac fermion theory with a mass proportional to
u − v; the transition between the SPT and trivial phases
occurs at the massless point u ¼ v. H0 and H1 can be
viewed as representatives of the trivial and SPT phases,
respectively.
The Floquet model (2) is closely related to a simple

ð1þ 1ÞD model discussed in Refs. [24,27,52], with the
small difference that Eq. (2) is formulated in terms of
complex rather than Majorana fermion operators [53]. The
analysis of both models is nearly identical, and they have
the same phase diagram. Since energy is no longer
conserved in the time-dependent model (2), phases are
classified according to spectral properties of the Floquet
operator

UF ¼ UðTÞ ¼ e−iH1t1e−iH0t0 ≡ e−iHFT; ð6Þ

where T¼t0þt1 is the driving period andHF ¼ ði=TÞ lnUF
is known as the Floquet or stroboscopic Hamiltonian. The
quasienergies −π=T ≤ ϵ < π=T are the eigenvalues of HF.
They can be obtained analytically because the model (6) is
quadratic [53]. There are four phases, which we label trivial,
0, π, and 0π (see Fig. 2). The 0 and π phases have localized
boundary modes with ϵ ¼ 0 and ðπ=TÞ, respectively; the 0π
phase has both zero and π modes, while the trivial phase has
neither. The phase boundaries inFig. 2 are the lines in the t0-t1
plane where the quasienergy gap closes. The trivial and 0
phases are adiabatically connected to the trivial and topo-
logical phases of the SSH model, respectively. The phases
with π modes are “intrinsically Floquet” phases in the sense
that they cannot arise in the absence of the drive.
Floquet to lattice mapping.—It is natural to speculate

that the π modes in the Floquet system can be viewed as
doubler modes of an appropriate discrete-time lattice
fermion theory with time lattice constant τ ¼ T. To confirm
this, we will identify a discrete-time theory with
Hamiltonian H and spectrum E such that the poles in

Eq. (1) are in one-to-one correspondence with quasienergy
eigenvalues ϵ. Note that, in order for this identification to be
possible, it is necessary that the (single-particle) spectrum
of HF exhibit a π pairing such that for every quasienergy ϵ
there is a partner at ðπ=TÞ − ϵ. For the model (6), this
feature arises along the line ðt0=TÞ ¼ ðπ=4Þ, which con-
nects the trivial and 0π phases. On this line, the quasienergy
spectrum of HF with PBC takes the form [53]

ϵðkÞ ¼ �cos−1½− cosð2ηÞ cosð2kÞ�; ð7Þ

where η ¼ ðt1=TÞ − ðπ=4Þ measures the distance from the
gap closure at ðt1=TÞ ¼ ðπ=4Þ. To enable a one-to-one
mapping onto the poles (1), we will partition the quasie-
nergy spectrum ϵ into two subsets containing quasienergies
ϵ̃ and ðπ=TÞ − ϵ̃. We will then seek a model H whose
energy spectrum E satisfies

E ¼ 1

T
sinðTϵ̃Þ; ð8Þ

which stems from identifying p0 ¼ ϵ̃ in Eq. (1). A suitable
choiceof ϵ̃ consists of thevalues ϵðkÞ for ðπ=4Þ ≤ k < ð3π=4Þ
(see Fig. 3). The corresponding construction in Euclidean
spacetime aims to identify the eigenvalues of the states
jð1=TÞsin−1ðETÞ;Ei and jðπ=TÞ−ð1=TÞsin−1ðETÞ;Ei with
ð1=TÞ ffiffiffi

2
p

sinðTϵ̃Þ.
SSH mapping.—We now seek a Hamiltonian whose

spectrum satisfies Eq. (8). Since UF is built using the
SSH-type Hamiltonians (3), we first consider an SSH
Hamiltonian with dispersion given by Eq. (5). In this case,
Eq. (8) can be solved by

ESSHðk0Þ ¼
1

T
sin

�
Tϵ

�
k0

2
þ π

4

��
; ð9Þ

FIG. 2. Phase diagram of the Floquet model (6). The phases are
labeled by the presence or absence of zero and π modes localized
to boundaries. This Letter focuses on the vertical dashed line at
ðt0=TÞ ¼ ðπ=4Þ, which passes through the trivial and 0π phases.

FIG. 3. Spectrum of the Floquet model and its mapping onto the
lattice spectrum for η ¼ π=20. (a) Quasienergy spectrum of Eq. (6)
along the line ðt0=TÞ ¼ ðπ=4Þ [see Eq. (7)]. The quasienergy
values highlighted in blue are those corresponding to crystal
momenta k in the interval ½ðπ=4Þ; ð3π=4ÞÞ (gray vertical lines),
denoted ϵ̃ in the text. (b) Sine-transformed quasienergy spectrum
entering Eq. (8). (c) Pole positions p0 with momenta assigned
according to the SSHmapping. The orange bands denote doublers,
which correspond to the quasienergies ðπ=TÞ − ϵ̃.
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where 0 ≤ k0 < π, where

u ¼ 1� sinð2ηÞ
2T

and v ¼ 1

T
− u: ð10Þ

(Note that we have assumed u, v ≥ 0 for simplicity.)
The two possible assignments of u satisfying Eq. (9)

have no impact on the bulk energy spectrum, but can
nevertheless be physically distinguished by solving the
SSH model with OBC. The SSH model (4) is in the SPT
phase when u > v and the trivial phase when u < v. Since
the topological 0π phase ofHF occurs when η > 0, we must
pick the branch of Eq. (10) such that u > v when η > 0;
this is accomplished by picking the “þ” branch. Let H̃SSH
denote the resulting time-independent SSH Hamiltonian.
By construction, the doubled spectrum (1) of H̃SSH when

defined on a discrete-time lattice with spacing τ ¼ T
[Fig. 3(c)] matches the quasienergy spectrum of the
Floquet Hamiltonian HF [Fig. 3(a)]. Thus, H̃SSH cannot
be defined on the same spatial lattice as HF; rather, if the
original Floquet model is defined on a lattice of 2N sites,
H̃SSH must be defined on N sites. To see this, recall that
Eq. (9) maps the interval ðπ=4Þ ≤ k < ð3π=4Þ to the
interval 0 ≤ k0 < π. The k interval contains half of the N
allowed crystal momentum values for HF, so k0 can only
take ðN=2Þ values (note that this requires N to be even).
This corresponds to N sites because the SSH model has a
two-site unit cell. Thus, H̃SSH should not be interpreted as a
mere rewriting ofHF. Instead, the models are related by the
nontrivial procedure of fermion doubling.
Wilson-Dirac mapping.—To make more direct contact

with lattice field theory, we now show that Eq. (8) can also
be satisfied by the spectrum of a Wilson-Dirac (WD)
Hamiltonian. The corresponding solution is inspired by
the observation that the spectrum of a WD Hamiltonian
with PBC can be mapped onto that of an SSH Hamiltonian
with PBC. The WD Hamiltonian on a 1D spatial lattice
with N sites can be written (here working in OBC for
simplicity)

HWD ¼
XN−1

x;x0¼0

ψ̄x

�
Rγ1ð−i∇x;x0 Þ−

R
2
∇2

x;x0 þmδx;x0

�
ψx0 ; ð11Þ

where ∇x;x0 ¼ ðδx0;xþ1 − δx0;x−1Þ=2 is a symmetric spatial
derivative, ∇2

x;x0 ¼ δx0;xþ1 þ δx0;x−1 − 2δx0;x is the second
derivative, ψx is a two-component Dirac spinor with
associated gamma matrices γ0, γ1, and ψ̄x ¼ ψ†

xγ0. The
energy spectrum of this model with PBC is given by

EWDðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2sin2pþ ½mþ Rð1 − cospÞ�2

q
; ð12Þ

where −π ≤ p < π. Solving Eq. (8) yields

EWDðp0Þ ¼ 1

T
sin

�
Tϵ

�
p0

4
þ π

2

��
; ð13Þ

where −π ≤ p0 < π, provided that

m ¼ � sinð2ηÞ
T

and R ¼ 1

2T
−
m
2
; ð14Þ

where we have assumed R ≥ 0 for simplicity. Following the
SSH case, we now ask which of these branches corresponds
to a topological phase when η > 0. With OBC, the WD
Hamiltonian (11) exhibits localized edge modes when
m < 0 [53]. Demanding that this condition coincide with
positive η selects the “−” branch. We denote the resulting
time-independent Wilson-Dirac Hamiltonian by H̃WD.
We have thus found a second time-independent

Hamiltonian, H̃WD, whose doubled spectrum when defined
on a discrete-time lattice coincides with the quasienergy
spectrum ofHF. We note here that H̃WD must be defined on
a lattice with N=2 sites (i.e., one-quarter of the sites in the
original Floquet model). Like the SSH case, the crystal
momentum interval 0 ≤ k < ðπ=2Þ corresponding to ϵ̃
contains ðN=2Þ points; thus, so does the new crystal
momentum interval −π ≤ p0 < π. However, unlike the
SSH model, the WD model has a one-site unit cell, so
there is one site per crystal momentum value.
Discussion.—The equalities (9) and (13) relate the

discrete-time spectra of static SSH and WD models to
the quasienergy spectrum of Eq. (6) with PBC. In each
case, the “correct” branch of the respective model param-
eter solutions is chosen by matching the presence of zero
modes as a function of η. However, these zero modes are
properties of the OBC spectrum. Given that the PBC
spectra match by construction, we expect that the OBC
spectra match up to ∼1=N corrections. In Fig. 4(a) we
demonstrate this numerically for the SSH mapping by

FIG. 4. Finite-size scaling of the maximum difference between
discrete-time spectra p0 and quasienergy spectra ϵ (a) for OBC
and (b) for OBC with a domain wall where η switches sign. In
both panels we compare to the SSH spectrum and fix η ¼ π=8,
considering system sizes N ¼ 100; 200;…; 900. Dashed lines
indicate best fits to power laws in 1=N that are consistent with the
expected scaling.
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plotting the system size dependence of the maximum
difference between the discrete-time frequency spectrum
p0 and the quasienergy spectrum ϵ, where each spectrum is
constructed as an ordered list.
Another test of equivalence is to compare spectra in the

presence of a domain wall in η. For the SSH model, this
corresponds to a standard domain wall in the mass profile
[2], while for the WD model it amounts to a domain wall in
both the mass and the Wilson parameter R. For the Floquet
model, a domain wall in η entails an abrupt change in the
coefficient of H1 from 2 to 2½ðπ=4Þ − η�=½ðπ=4Þ þ η� at
some point in space. In Fig. 4(b) we examine the finite-size
dependence of the difference between the discrete-time
SSH and quasienergy spectra in the presence of a domain
wall in the middle of the chain, again finding the expected
∼1=N scaling. Furthermore, we note that the spectral
equivalence guarantees that the zero and π modes that
appear at spatial boundaries and domain walls in all three
models have matching localization lengths when the
system size is scaled appropriately [53].
These results build confidence that the mapping we

develop defines a notion of equivalence in the thermody-
namic limit between models irrespective of boundary
conditions or the presence of topological defects. Our
mapping implies that any observable that depends on the
single-particle Green’s function, evaluated on the Floquet
side at times t ¼ nT, should match the corresponding
observable in lattice field theory on the corresponding
temporal lattice sites.
Outlook.—We have demonstrated spectral equivalence

between a simple Floquet insulator model in (1þ 1)
dimensions and two canonical fermion models (SSH and
WD) defined on a two-dimensional spacetime lattice. The π
pairing in the single-particle spectrum, which occurs along
the line ðt0=TÞ ¼ ðπ=4Þ, allows us to discard half of the
degrees of freedom in the Floquet model to define a related
static model, which recovers the discarded eigenvalues via
fermion doubling after time discretization. One interesting
question for future work is whether the equivalence can be
extended off the line ðt0=TÞ ¼ ðπ=4Þ [54]. We note that π
pairing also occurs along the line ðt1=TÞ ¼ ðπ=4Þ for PBC
but is lost for OBC, as evidenced by the separate existence
of 0 and π modes with OBC. A separate direction is to
consider extensions of these mappings to ð2þ 1ÞD sys-
tems, where new phases like anomalous Floquet topologi-
cal insulators emerge [23,55]. In any dimension, it is also
worth considering whether a similar equivalence between
bulk topological invariants in Floquet systems [23,56–59]
and lattice field theories can emerge [60]. Furthermore, it
will be interesting to consider whether the conditions for
destabilization of lattice topological phases in the presence
of strong interactions and away from the continuum limit
[61] can be related to the destabilization of Floquet phases
due to unbounded heating.

The latter requires introducing prethermalization or
localization physics to enable long-lived phenomena
[24,62–64]. Finally, we note that our results may have
implications for quantum simulation of lattice gauge theo-
ries. Indeed, gauge fields can be simulated in Floquet
systems [65,66], and adding fermionic degrees of freedom
with appropriate driving can potentially be used tomimic the
fermionic sector of the discrete spacetime lattice field theory.
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