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The iron-based superconductor FeSe1−xTex has recently gained significant attention as a host of two
distinct physical phenomena: (i) Majorana zero modes that can serve as potential topologically protected
qubits, and (ii) a realization of the orbital-selective Mott transition. In this Letter, we connect these two
phenomena and provide new insights into the interplay between strong electronic correlations and
nontrivial topology in FeSe1−xTex. Using linearized quasiparticle self-consistent GW plus dynamical
mean-field theory, we show that the topologically protected Dirac surface state has substantial FeðdxyÞ
character. The proximity to the orbital-selective Mott transition plays a dual role: it facilitates the
appearance of the topological surface state by bringing the Dirac cone close to the chemical potential but
destroys the Z2 topological superconductivity when the system is too close to the orbital-selective Mott
phase. We derive a reduced effective Hamiltonian that describes the topological band. Its parameters
capture all the chemical trends found in the first principles calculation. Our findings provide a framework
for further study of the interplay between strong electronic correlations and nontrivial topology in other
iron-based superconductors.
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Introduction.—Quantum information science is a surg-
ing frontier of physical science. By creating quantum states
and utilizing them as quantum bits (qubits) [1], it promises
vastly improved performance over what we has been
achieved in computing, sensing, communication, and
cryptography in the twentieth century [2,3]. Several mile-
stones of quantum technologies, such as universal quantum
computers and the notion of quantum supremacy, have
been reached successfully. Today’s quantum technologies
are built on a few tens of qubits. They often suffer from
computation-destroying noise [4], spurring the search for
bigger and more robust quantum systems. Majorana zero
modes are exotic quantum states emerging at the boundary
of topological superconductors that provide a topologically
protected route to realize qubits [5–7] robust against noise.
Among various topological superconductor candidates,

FeSe1−xTex (FST) compoundshold anuniqueposition [8–10]
as they realize topological superconductivity (TPSC),
Majorana states, time-reversal symmetry breaking, a large
s-wave superconducting gap [11–13], and strong spin-orbit
coupling (SOC) in a single material. In the normal phase,
parity-even and parity-odd bands are inverted along the
Γ − Z direction in the first Brillouin zone, and as a result, the
SOCopens an energy gap at the band crossing point [8]. This
enables nontrivial Z2 bulk-band topology and “spinless”
two-dimensional surface Dirac cone [14–16]. This non-
trivial bulk-band topology makes the superconductivity at

the surface fascinating.When the chemical potential touches
the “spinless” surface state, the bulk s-wave superconduc-
tivity induces topologically nontrivial superconductivity at
the “spinless” surface states [17]. In contrast, the surface
states are topologically trivial when the chemical potential is
far from the “spinless” surface bands [9]. Following a
theoretical prediction [9,17], signatures of Majorana states
were found at the core of the vortices and at antiphase
structural domain walls of FST [14,18,19].
FST has also been intensively studied as a host of

fascinating strong correlation phenomena. It realizes the
phenomenon of orbital differentiation (which takes place
when some orbitals display significant levels of correlation)
and, in its extreme version, the orbital selective Mott phase
(OSMP) [20–22]. This phase features a localized FeðdxyÞ
orbital, whereas the rest of the FeðdÞ orbitals remain
itinerant [20–22]. Up to now, the concepts of Majorana
states and OSMP have been addressed separately as
independent phenomena. In this Letter, we show that both
are intimately connected.
Density-functional theory (DFT) [23,24] is very suc-

cessful in predicting the topological properties of weakly
correlated materials, and it has been used as a standard
method for discovery and screening new topological
systems. However, it is well-known that DFT fails to
describe the strong correlation phenomena, such as the
OSMP, which occurs in multiorbital correlated materials.
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Hence, there are important disagreements between DFT
bands and experimental observations on FST. For instance,
in undoped FST, DFT puts the surface Dirac cone exci-
tation energy ∼100 meV above the Fermi level [8,9]. This
implies that the surface is topologically trivial in the
undoped state, and only becomes nontrivial when the
system is sufficiently electron-doped, in stark contrast to
the experimental findings [25]. DFT plus dynamical mean-
field theory (DMFT) flattens the quasiparticle bands and
brings the Dirac surface bands closer to the chemical
potential [26].
In this Letter, we demonstrate that the strong orbital-

selective correlations and the nontrivial topology of FST
are intimately connected. We use linearized quasiparticle
self-consistent GW (LQSGW) [27,28] combined with
DMFT [29–37] (LQSGW þ DMFT) [38,39] to treat static
and dynamic correlations. Taking into account both elec-
tronic correlation and SOC, we successfully reproduce the
bulk-band topology and surface Dirac cone excitation
energy of FST. We then derive an effective Hamiltonian
to elucidate the character of the band, which disperses
along kz and undergoes band inversion. This turns out to be
our main character, the correlated FeðdxyÞ orbital, which
can undergo an orbital-selective Mott transition (OSMT),
rather than the chalcogen pz orbital as it is usually assumed
in the literature [26,40]. We use this Hamiltonian to
elucidate the sensitivity of the emerging TPSC of FST
to the chemical variations in concentration of Te and to the
chalcogen height and conclude that electronic correlations
are significant in determining the region of TPSC, which
should be not too far but not too close to the OSMT.
Method.—We model the FeSe0.5Te0.5 alloy by replacing

it by a crystal structure with an averaged chalcogen height,
as shown in Figs. 1(a) and 1(b), with parameters adapted
from experiments [41,42] (see the Supplemental Material
(SM) [43], Sec. I, II.A, III, IV, and V).
The quasiparticle bands of FSTwere computed using the

Hamiltonian

HLQSGWþDMFTþSOCðkÞ ¼HLQSGWþDMFTðkÞ
þfFe-dZimpðλ1þΔλ1ÞðL ·SÞf†Fe-d
þfSe=Te-pλ2ðL ·SÞf†Se=Te-p; ð1Þ

where the SOC term was added to the HLQSGWþDMFTðkÞ
(see SM [43], Sec. II.B-I). For details of Eq. (1), see
Ref. [61]. For the LQSGW þ DMFT scheme, we used
ComDMFT [39]. For more details, see Ref. [63].
Correlated electronic structure and topological

superconductivity.—Figures 1(c) and 1(d) display the
angle-resolved photoemission (ARPES) quasiparticle dis-
persions along the Γ − Z direction from several experi-
mental groups [8,44,45], and from LQSGW þ DMFTþ
SOC quasiparticle dispersions, respectively. Even parity
bands of α0, α, and β are shown, as well as an odd parity

band that is the main character in this Letter. The odd parity
band is the most dispersive band along the kz axis and is
responsible for the topological phenomena. We anticipate
that this band will be primarily made of a correlated FeðdxyÞ
orbital close to an OSMTand we anticipate this fact, which
will be demonstrated later in this Letter, by using the
notation xy− [see Eq. (2)]. As seen in Fig. 1(d), a SOC-
induced gap opens at the band crossing point between α0
and xy− bands. Although there are differences in the energy
position of the xy− band at Z among different experiments,
there is consensus that there is a band inversion between the
α0 and xy− bands [8,44,45]. Figure 1(c) displays that, in
Refs. [44,45], the flat band just beneath the chemical
potential undergoes a switch of band character (parity)
from α0 (þ) to xy− (−) in the Γ − Z direction, which is
similar to the recent ARPES study on this compound in
Ref. [65]. In contrast, in Ref. [8], the energy position of the
xy− band at Z is at least below −0.2 eV.
Figure 1(d) presents the electronic structure obtained

within the LQSGW þ DMFTþ SOC method along Γ − Z.
The chemical potential lies within the SOC-induced gap,
which is in agreement with ARPES experiments [8,44,45].
The even-parity α0 band lies below the chemical potential at
Γ and above it at Z, while the odd-parity xy− band lies

(d)(c)

(b)(a)

FIG. 1. Structural inversion symmetry, and the band inversion
in experiments [8,44,45] and the present theory. (a),(b) The
present structural model for FST and the atomic coordinate in the
unit cell. The Cn indicates a chalcogen atom, and the inversion
center is [0,0,0]. (c) Experimental quasiparticle dispersions in the
Γ − Z k point line, adapted from P. D. Johnson et al. (ARPES1
from Ref. [44]), H. Lohani et al. (ARPES2 from Ref. [45]), and Z.
Wang et al. (ARPES3 from Ref. [8]). (d) Theoretical quasiparticle
dispersions in the Γ − Z k point line in the present LQSGW þ
DMFTþ SOC framework. Parity eigenvalues for each band are
denoted in (d), as α0 (þ), α (þ), β (þ), and xy− (−). The band has
the z2 orbital character is also denoted in (c) and (d).

PHYSICAL REVIEW LETTERS 132, 136504 (2024)

136504-2



above the chemical potential at Γ and below it at Z. This
band inversion, in the presence of time-reversal and
inversion symmetries, leads to a nontrivial Z2 invariant
at the bulk, resulting in the emergence of a surface state
Dirac cone at Γ in the (001) surface. Our calculations are in
good agreement with ARPES experiments [8,44,45], indi-
cating that they properly describe the topological properties
of the material. Interestingly, the energy position of the xy−

band at Z obtained by the present theory lies between the
experiments of Refs. [44,45] and Ref. [8]. This has been
attributed to the sensitivity of the xy− band dispersion to the
orbital-selective correlation of the FeðdxyÞ orbital, which is
affected by the Se=Te ratio. Additionally, the energy
position of the Feðdz2Þ driven bands is in agreement with
the experiment of Ref. [8]. This confirms the effectiveness
of the LQSGW þ DMFTþ SOC framework in treating
electronic correlations.
Figure 2 displays the surface electronic structure near Γ̄

obtained from a slab calculation using the bulk LQSGW þ
DMFTþ SOC parameters (see SM [43], Sec. II.J). The
surface state Dirac cone of this theory is in excellent
agreement with the ARPES data reported in Ref. [14]
after a small chemical potential shift of þ6 meV
(0.035 electrons=formula unit). Hence, the present theo-
retical tools can be used for the quantitative description of
the TPSC of FST. This agreement requires the following
important ingredients: (i) the static self-energy driven
lowering of the Feðdxz=yzÞ orbital energy level, (ii) the
dynamical correlation driven renormalization of bands, and
(iii) the renormalized SOC from the consideration of the
orbitally off-diagonal self-energy.

Orbital-selective Mott transition and nontrivial Z2

topology.—We now demonstrate the assertion that the
most dispersive band along kz, has a dominant FeðdxyÞ
orbital contribution hybridizing with the SeðpzÞ orbital
justifying our label xy−. The band inversion in this band
drives the Z2 topology. Its sensitivity to the orbital selective
correlation derives from its dominant FeðdxyÞ orbital
character depicted in Fig. 3. This is not widely recognized
in the literature and this band is often labeled as a pz band
in the literature [26,40].
Analysis of Fig. 3 reveals that the OSMT in FST removes

the nontrivial Z2 topology of the bulk from the xy− band, as
the β (even parity) and xy− (odd parity) bands merge to
identical flat bands at the chemical potential, with the loss
of spectral weights due to the incoherent nature of the
FeðdxyÞ orbital in the OSMP (for details of the chalcogen
height or the Te ratio enhancement driven promotion of
the orbital selective electronic correlation approaching the
OSMP, see SM [43], Sec. IV and V). This explains the

FIG. 2. Theoretical (001) surface state electronic structure in
the LQSGW þ DMFTþ SOC near Γ̄, compared with the ex-
perimental surface electronic structure in the ARPES of Ref. [14].
The black horizontal dashed line is the original chemical potential
in the present theory. The purple horizontal dashed line is the
chemical potential for the electron doping of 0.035 (electrons/
formula unit), þ6 meV in the present theory.

FIG. 3. OSMT effects on the electronic structure of FST.
(a) Band structure of FST in the LQSGW þ DMFT framework.
(b) Band structure of FST in the OSMP by forcing Zxy to zero
from the LQSGW þ DMFT result. (c) and (d) are the same as (a)
and (b) in a wide energy window, respectively. The size of green,
red, blue, and orange circles present Feðdxz=yzÞ, FeðdxyÞ, SeðpzÞ,
and FeðsÞ orbital contributions, respectively. For (a) and (b), the
size of blue circles for the SeðpzÞ orbital is multiplied by the
factor of 1.6. The parity for α, α0, β, and xy− bands are denoted in
(a) and (b). The characterization of p−

z majority and pþ
z majority

bands are denoted for (c) and (d) [see Eq. (2)].
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disappearance of the Dirac band from the enhancement of
the Te ratio in the experiment [25] (details of the Z2

topology are in the SM [43], Sec. VI).
We now construct an effective Hamiltonian in Eq. (2) to

analyze the relation between the nontrivial Z2 topology and
the substantial correlation strength in the FeðdxyÞ orbital.
The Hamiltonian, Hmnð0; 0; kzÞ, is initially constructed in
the basis of two FeðdxyÞ orbitals (jxy1i and jxy2i) and two
SeðpzÞ orbitals (jpz1i and jpz2i) in the unit cell, and was
transformed to the crystal momentum space with kx;y set to
0 for the Γ − Z momentum path. We transform the
Hamiltonian Hmnð0; 0; kzÞ to the Hm̃ ñð0; 0; kzÞ in
Eq. (2) using the basis transformation as jxy−i ¼
ð1= ffiffiffi

2
p Þðjxy1i − jxy2iÞ, jxyþi ¼ ð1= ffiffiffi

2
p Þðjxy1i þ jxy2iÞ,

jp−
z i ¼ ð1= ffiffiffi

2
p Þðjpz1i þ jpz2iÞ, and jpþ

z i ¼ ð1= ffiffiffi

2
p Þ

ðjpz1i − jpz2iÞ. The Hamiltonian Hm̃ ñð0; 0; kzÞ in
Eq. (2) is in the order of jxy−i, jxyþi, jp−

z i, and jpþ
z i

basis. In this basis, þ and − signs denote even and odd
parities, respectively [66]. The tight-binding parameters in
Eq. (2) are effective variables that encompass contributions
from longer range hoppings and other dispersive orbitals
[e.g., FeðsÞ in Fig. 3]. The on-site energy level of an orbital
m is ϵ̃m, and the nearest neighboring hopping within the
orbital is t̃m. The out-of-plane hopping of SeðpzÞ is t̃2, and
the nearest hopping between FeðdxyÞ and SeðpzÞ is t̃1. All
hopping elements are real and positive, thus accounting for
the parity of four orbitals (see SM [43], Sec. VII):

Hm̃ ñð0; 0; kzÞ ¼

2

6

6

6

6

4

ϵ̃xy − 4t̃xy 0 4t̃1 0

0 ϵ̃xy þ 4t̃xy 0 0

4t̃1 0 ϵ̃pz
þ 4t̃pz

þ 4t̃2 cos kz −4it̃2 sin kz
0 0 þ4it̃2 sin kz ϵ̃pz

− 4t̃pz
− 4t̃2 cos kz

3

7

7

7

7

5

: ð2Þ

Equation (2) reveals that the jxyþi basis does not
hybridize with any other vector in the basis at Γ − Z, and
can be regarded as a nonbonding state of FeðdxyÞ. The band
associated with this orbital character is the β band, which is
consistent with Eq. (2) as it has an even parity with very
weak dispersion inΓ − Z, as shown in Fig. 1. In contrast, the
jxy−i orbital hybridizes with the jp−

z i orbital from the 4t̃1
term in Eq. (2), which is allowed by the inversion symmetry
of the system [8]. The band resulting from this hybridization,
the xy− band in Fig. 1, has odd parity. It is important to note
that the xy− band is primarily composed of the FeðdxyÞ
orbital due to the substantially higher energy level of the
jxy−i orbital than that of the jp−

z i orbital in Eq. (2), as shown
in Figs. 3(a) and 3(c). The xy− band acquires a band
dispersion in kz from the 4t̃1 term [67].
All the first principles studies were carried out at a

composition with equal amounts of Se and Te. We now
construct a simple model to understand analytically the
effects of increasing Te or increasing chalcogen height,
which results in increasing correlation strength that affects
the electronic structure, summarized by Eq. (2). We use the
mass renormalization parameters of the FeðdÞ orbital, Zm of
the d orbital m, which decrease as the correlation strength
increases, renormalizing the hoppings from their bare value
to

ffiffiffiffiffiffi

Zm
p

tmn
ffiffiffiffiffiffi

Zn
p

. Zxy approaches zero when the correlation
is enhanced with a larger Te ratio [20,21]. We conclude that
the reduction of the t̃1 term from the OSMT in FST leads to
a down shifted energy level of the xy− band, as well as a
decrease in the kz dependent dispersion of the xy− band:

t̃1→
ffiffiffiffiffiffiffi

Zxy

p

t̃1; t̃xy→Zxyt̃xy: ð3Þ

Equation (3) demonstrates the renormalization of hop-
ping elements, t̃1 and t̃xy, due to the dynamical correlation
of the FeðdxyÞ orbital. Through Eq. (2) and Eq. (3), it is
evident that in the vicinity of the OSMP, the two FeðdxyÞ
dominant bands, β and xy−, coalesce into a single flat band
due to the lack of hybridization with the jp−

z i orbital. This
implies that close to the OSMP, the Z2 topology is trivial,
with a removal of band inversion between the α0 and
xy− bands, which is consistent with the band structure in
Figs. 3(b) and 3(d). The effective Hamiltonian in Eq. (2)
successfully captures the electronic structure in Fig. 3 (see
SM [43], Sec. VII).
In Fig. 4, we present the ZSe dependent top and bottom

energy positions of the α=α0 band and the xy− band in
Γ − Z from the local density approximation (LDA),
the LQSGW, and the LQSGW þ DMFT frameworks.
The range of the ZSe for the band inversion gives rise to
the nontrivial Z2 topology is determined to be [1.38,1.61] Å
for the LDA, [1.41,1.52] Å for the LQSGW, and
[1.42,1.51] Å for the LQSGW þ DMFT, respectively, as
shown in Figs. 4(a)–4(c) from the band inversion condition
in Fig. 4(d) [68]. The electronic correlation renormalizes
the bandwidth of the xy− band, reducing the range of ZSe
for the nontrivial Z2 topology. It is also found that the
electronic correlation shifts down the α=α0 band with the
reduced bandwidth of the band. The electronic correlation
effects on the xy− band explains the removal of the TPSC of
FST upon enhancing Te or Se ratio, which changes the
chalcogen heights [25] (see SM [43], Sec. IV and V).
Furthermore, in the DFT framework, the substitution of Te
for Se brings a minor enhancement of the t̃1 term while
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substantially enhancing the t̃2 term, leading to the OSMP
with vanishing t̃1 contribution (see SM [43], Sec. VIII [69]).
These results demonstrate the essential roles of the elec-
tronic correlation for the observation of the TPSC in FST.
Conclusion.—Recognizing the correlated nature of the

topologically nontrivial band [FeðdxyÞ xy−, which drives
the OSMT] provides new insights into many puzzling
observations of FST. As the surface of a layered compound
is more correlated than the bulk layers due to reduced
screening, we expect the surface OSMT to occur at a larger
Se concentration than in the bulk. In the OSMP, FeðdxyÞ
surface local moments are coupled to the itinerant states of
Feðdxz=yzÞ via double exchange, leading to possible time-
reversal symmetry breaking states, accounting for the
recent experimental observations [10,16].
Quantitatively, the successful application of the

LQSGW þ DMFTþ SOC method enabled the theoretical
estimations of the parameters of TPSC of FST and their

dependence on the structure and the chemistry of the
compound. We provided an explanation for the region of
TPSC found in the phase diagram of Refs. [10,25], which
we demonstrated requires an intermediate concentration of
Te so as to be close but not too close to the OSMP. This
suggests that theoretically guided correlated topological
material design is feasible. More detailed modeling of the
interplay of surface and bulk phenomena will required
extensions of the quasiparticle GW þ DMFT techniques to
strongly inhomogeneous states [70].
Finally, the strong sensitivity of the topological band to

the chalcogen height suggests experiments using stress [71]
to control the region of the phase diagram realizing TPSC
with its resulting Majorana zero modes to test our under-
standing of this material further.
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