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An integrated quantum light source is increasingly desirable in large-scale quantum information
processing. Despite recent remarkable advances, a new material platform is constantly being explored for
the fully on-chip integration of quantum light generation, active and passive manipulation, and detection.
Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation
in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In
our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous
dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated
with a typical raw two-photon interference visibility of 95.5� 6.5%, which is further configured to

generate a heralded single photon with a typical heralded second-order autocorrelation gð2ÞH ð0Þ of
0.045� 0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.
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Introduction.—A quantum photonic integrated circuit
(QPIC) provides a promising approach to developing future
nonclassical technologies [1–3], which is considered one of
the most competitive candidates for the scalable implemen-
tation of quantum communication, quantum metrology,
quantum simulation, and computation [4–7]. Advances in
complementary metal-oxide semiconductor (CMOS) fabri-
cation enable the functionality of tabletop quantum optics to
be scaled down to prototype chips with significant improve-
ments in efficiency, robustness, and stability [8]. For in-
stance, quantum light generation [9,10], quantum photonic
storage [11–13], and single-photon detection [14] have been
realized in chip-to-chip quantum teleportation [15], quantum
key distribution [16–18], and quantum boson sampling
[19–22]. Recently, the integration of quantum light gener-
ation with active and passive manipulations has been
demonstrated [23,24] with low-loss indirect-band gap mate-
rials and direct-band gap III-V semiconductors, such as silica
[25,26], silicon [27–30], silicon nitride [31–35], lithium
niobate [36,37], gallium aluminum arsenide [38], indium
phosphide [39], aluminum nitride [40], and silicon carbide
[41]. The indirect-band gap material with high refractive

index is usually used for light guiding and entangled photon
pair generating, while the direct-band gap III-V semicon-
ductor is suitable for optical gain and lasing. Despite these
advances, it remains challenging to combine different blocks
to build a complex quantum circuit on a single chip, which is
primarily due to the absence of a favorable quantummaterial
platform encompassing all required functionalities [23,24].
As a III-V semiconductor with a band gap of 3.4 eV,

gallium nitride (GaN) is a promising material for next-
generation photonic and electronic devices. It exhibits a
wide optical transparency window extending from ultra-
violet to midinfrared wavelength. Its noncentrosymmetric
crystal structure endows both the second-order and the
third-order nonlinearities [42,43]. These features, coupled
with the epitaxial growth of GaN on sapphire (GaNOI) and
the recent demonstration of a low-loss GaNOI integrated
photonics platform, exemplified by the generation of the
second harmonics and the Kerr combs [44–46], highlight
remarkable capabilities. Furthermore, the GaN has emerged
as a unique quantum material for single-photon emitter
known as quantum dot or defect center at room temperature
[47–55]. Leveraging its favorable characteristics for optical

PHYSICAL REVIEW LETTERS 132, 133603 (2024)
Featured in Physics

0031-9007=24=132(13)=133603(8) 133603-1 © 2024 American Physical Society

https://orcid.org/0009-0005-9699-8876
https://orcid.org/0009-0000-4213-7951
https://orcid.org/0000-0002-7831-2122
https://orcid.org/0000-0001-7099-1995
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.133603&domain=pdf&date_stamp=2024-03-29
https://doi.org/10.1103/PhysRevLett.132.133603
https://doi.org/10.1103/PhysRevLett.132.133603
https://doi.org/10.1103/PhysRevLett.132.133603
https://doi.org/10.1103/PhysRevLett.132.133603


gain and lasing, the GaN also exhibits an excellent potential
toward a fully integrated quantum photonic circuit. These
advantages inspire us to demonstrate the generation of
quantum light based on the spontaneous four-wave mixing
(SFWM) process in GaN, the verification of which is
urgently expected to pave the way for the development of
the QPIC.
In this Letter, we demonstrate the generation of corre-

lated or entangled photon pairs in a GaN microring
resonator (MRR) via the SFWM process for the first time.
In our experiments, the GaN MRR is designed with a free
spectral range (FSR) of 330 GHz and near-zero anomalous
dispersion over 100 nm in the telecom C-band. In our
demonstration, correlated photon pairs are generated within
the range of flat anomalous dispersion wavelength. Seven
wavelength-paired photon pairs are configured as multi-
wavelength energy-time entangled photon pair source and
heralded single-photon source, respectively. A typical raw
two-photon interference visibility of 95.5� 6.5% and a

typical heralded second-order autocorrelation gð2ÞH ð0Þ of
0.045� 0.001 are obtained. Our results pave the way for
developing a fully integrated quantum photonic circuit.
Device fabrication and characterization.—In our experi-

ments, the MRR is fabricated on an undoped GaN film
grown epitaxially via metal-organic chemical vapor dep-
osition (MOCVD) [46]. The radius is 60 μm with an FSR
of 330 GHz as shown in Figs. 1(a) and 1(b). Figure 1(c)
gives the transmission spectrum with a quality factor (Q
factor) of 4.3 × 105 at a resonant wavelength of 1550.1 nm.
To obtain devices with anomalous and near-zero dispersion
for the phase matching of SFWM, we simulate and design
the GaN microring with 2.25-μm waveguide width and

0.73-μm etching depth. The experimental measured and
fitted dispersions of the TE00 mode are shown in Fig. 1(d),
indicating an anomalous and near-zero dispersion of
−8.26 × 10−27 s2=m in a wide spectrum. See more details
of device design and fabrication in Supplemental Material
[56] Note1.
Photon pair generation in the GaN MRR.—The scheme

for the generation and characterization of photon pair is
illustrated in Fig. 2. Figure 2(a) shows the experimental
setup for the generation of correlated photons in GaNMRR.
In our work, we use a continuous-wave (cw) tunable laser
(TL) at awavelength of 1550.1 nm corresponding to the ITU
channel 34 (C34). The power and polarization state of the
pump light are adjusted by using a variable optical attenuator
(VOA) and a polarization controller (PC), respectively. A
90∶10 beam splitter (BS) is used for the power monitor with
a power meter (PM). To suppress the sideband noise of the
pump laser and the Raman photons generated in the fiber
pigtails, a high-isolation (≥ 120 dB) dense wavelength
division multiplexer (DWDM) at C34 with a 20-cm long
lensed fiber pigtail is connected to the input port of the chip.
At the output of the chip, the residual pump laser is
eliminated by a pump rejection filtering (PRF) module with
an isolation of ≥ 50 dB, which is coupled to the chip with
another 20-cm long lensed fiber pigtail. An input-to-output
coupling loss of 8.0 dB is achieved in our experiment. The
generated photon pair, i.e., signal and idler photons are
selected by another two DWDMs and detected by super-
conducting nanowire single-photon detectors (SNSPDs)
with a detection efficiency of 75% and a dark count rate
of 80 Hz as shown in Fig. 2(b). The detection signals from
SNSPDs are sent to a time-to-digital converter (TDC) to
record coincidence events.

FIG. 1. (a) Scanning electron microscopy image of the GaN
MRR pulley with a 60-μm radius. (b) Measured transmission
spectrum near 1550 nm with a free spectral range of 330 GHz.
(c) Resonance dip around 1550.1 nm, indicating a loaded quality
factor of 4.3 × 105. (d) Measured and fitted results of the
integrated dispersion of the TE00 mode.

FIG. 2. Schematic diagram of experimental setups. (a) Gener-
ation of correlated photon pairs. (b) Correlation properties.
(c) Photon spectrum. (d) Energy-time entanglement with two-
photon interference. (e) Heralded single-photon with HBT
experimental setup. The SNSPDs are operated at a temperature
of 2.2 K.
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Wemeasure the single side count rate and the coincidence
count rate at different pump power levels to characterize
the quantum correlation property of generated photons.
Figure 3(a) shows the measured single side count rate of the
idler photon at the wavelength of 1566.23 nm (red dot) as a
function of pump power. The error bars of the photon count
rate are obtained by Poissonian photon-counting statistics.
The generation of correlated photon pairs is verified by
fitting the experimental result with N ¼ a × Pþ b×
P2 þ c, where a, b, and c are the contributions of noise
photon (yellow dash line), correlated photon (blue dash
line), and dark count, respectively. By extracting the
coefficient of the quadratic fitting curve, we obtain a ¼
5.1 × 104 s−1mW−1 and b ¼ 7.6 × 104 s−1mW−2, indicat-
ing the high-quality generation of correlated photon pair in
our experiment. The coincidence count rate and coinci-
dence-to-accidental ratio (CAR) are measured as shown in
Fig. 3(b) with the signal and idler photons at 1534.30 and
1566.23 nm, respectively. The average CAR reaches 243
with a detected coincidence count rate of 126 Hz with a
coincidence width of 2 ns as illustrated in the inset of
Fig. 3(b). The efficiency or brightness (B) for single photon
generation, i.e., photon pair generation rate (PGR) over on-
chip pump power (B ¼ PGR=P2

p), is 2.09 MHzmW−2 in
average [36]. Furthermore, we demonstrate the multiwave-
length property of the generated quantum light as shown in

Fig. 2(c). The spectra of correlated and noise photons from
1480 to 1620 nm on each resonance are measured with a
tunable bandpass filter (TBF, EXFO XTA-50) in Fig. 3(c).
Our results show that multiwavelength correlated photon
pairs are generated exceeding a spectral range of 100 nm.
Two peaks of noise photons appear at 1516.5 and 1585.3 nm
due to the spontaneousRaman scatteringofGaN [57,58]. See
more details in Supplemental Material [56] Note2. The
quantum correlation properties of these photon pairs are
characterized by measuring the coincidence events between
different wavelength of signal or idler photon, i.e., SiIi,
where i is 2; 3;…8 as the shaded area in Fig. 3(c). Note that
the result of the first wavelength-paired photon pair and the
ones out of the range of our DWDMs are not given [59–61].
See more details in Supplemental Material [56] Note1.
Figure 3(d) shows the coincidence count rate of seven
wavelength-paired resonances with a pump power of
1.1 mW. The CARs for particular pairs are illustrated in
Fig. 3(e), which gives a maximum average CAR of 108 with
a coincidence count rate of 853 Hz.
Energy-time entanglement.—The correlated photon pairs

generated in the MRR pumped by a cw laser have the
intrinsic property of energy-time entanglement. As shown in
Fig. 2(d), the quantum entanglement property in our experi-
ments is verified by the two-photon interference [62,63] in an
unbalanced Michelson interferometer (UMI) with a 10-ns

FIG. 3. Experimental results of generated correlated photon pairs. (a) Single side count rate of the idler photon at 1566.23 nm versus
pump power. (b) Coincidence count rate and the calculated CAR versus pump power. The inset is the measured coincidence histogram
of the signal and idler photons at 1534.30 and 1566.23 nm. (c) Spectra of the correlated photons and noise photons in the on-resonance
case from 1480 to 1620 nm. (d) Coincidence count rate of different combinations of the wavelength of correlated photon pairs. (e) CAR
of different combinations of wavelength of correlated photon pairs.
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delay. The coincidence histograms after interference are
shown inFigs. 4(a) and4(b),which represent the constructive
and destructive two-photon interfering, respectively. As
shown in the Fig. 4(c), count rates of signal and idler photons
are constant at ∼17.8 and ∼21.5 kHz, respectively, which
indicates that there is no single-photon interference in our
measurement. The measured interference curve is shown in
Fig. 4(d). Blue circles are experimental results,while the blue
lines are the fitting curves with a 1000-time Monte Carlo
method. The fitting visibility is calculated as 95.5� 6.5%
without subtracting the accidental coincidence counts. An
attenuated cw laser is injected into the UMI in the opposite
direction for actively stabilization of the phase of the UMI.
The measured single-photon interference of the attenuated

laser is illustrated by red dots and a line as shown in Fig. 4(d).
It can be seen that the period of single-photon interference is
two times of that of the two-photon interference, verifying
the energy-time property of the generated photon pairs. The
measured energy-time entanglement properties of other
wavelength-paired photon pairs are given in Table I.
Because of the smaller CAR caused by extra noise photons,
the visibilities of the second and the third wavelength-paired
photonpairs are about 82%,while thevisibilities of theothers
are above 94%.
Single-photon purity.—In our demonstration, heralded

single photons at different wavelengths can be obtained
based on the generation of correlated photon pairs. The
unheralded second-order autocorrelation function gð2ÞðτÞ is
measured by the Hanbury Brown–Twiss (HBT) setup [64]
as shown in Fig. 2(e). To characterize the single-mode
property of generated photons on each resonance, the
photons are sent into a 50∶50 BS and the twofold
coincidence events are recorded. For an ideal single-mode
thermal state, the gð2Þð0Þ value should be 2, which can be
obtained by calculating the ratio of the coincidence with
zero delay to the one with nonzero delay. The measured
result of autocorrelation gð2ÞðτÞ for photons at 1566.23 nm
is shown in Fig. 5(a). The measured data is fitted with a
double exponential curve. The gð2Þð0Þ of 1.963� 0.045 is
obtained, which corresponds to an effective mode number
of 1.038 calculated by gð2Þð0Þ ¼ 1þ 1=N, where N is the
total number of modes [65,66]. The values of gð2Þð0Þ for all
the seven measured channels are given in Table I. The

heralded second-order autocorrelation function gð2ÞH ðτÞ for
single-photon purity is measured with threefold coinci-
dence configuration. In our experiment, signal photons are
detected by SNSPD while the idler photons are detected
with a delay time of τ after passing through the 50∶50 BS.
Then, the threefold coincidence events are recorded by
TDC. With a pump power of 1.45 mW, the measured

gð2ÞH ðτÞ for heralded single photon at 1566.23 nm, with its
heralding at 1534.30 nm, is given in Fig. 5(b). The obtained

value of gð2ÞH ð0Þ is 0.045� 0.001 with a heralding rate of

189 kHz. The values of heralded gð2ÞH ð0Þ with different

FIG. 4. Experimental results of two-photon interference. (a)
and (b) correspond to constructive and destructive two-photon
interference within 15 s, respectively. (c) Photon count rate of the
signal and idler photons. (d) Interference fringe of energy-time
entangled photons with a visibility of 95.5� 6.5% (blue dots and
lines). The single-photon interference is given by the right
vertical axis with red dots and line.

TABLE I. Results of visibilities of two-photon interference, gð2Þð0Þ, and gð2ÞH ð0Þ for the correlated photon pairs at different
wavelengths.

λs and λi (nm) Visibility(%) gð2Þð0Þ gð2ÞH ð0Þ Heralding count rate

1544.80 and 1555.44 82.3� 4.1 1.799� 0.032 0.239� 0.008 303 kHz
1542.16 and 1558.13 82.9� 1.3 1.970� 0.034 0.167� 0.004 255 kHz
1539.53 and 1560.82 96.6� 2.0 1.820� 0.046 0.073� 0.003 169 kHz
1536.91 and 1563.52 99.3� 4.9 1.914� 0.058 0.056� 0.003 137 kHz
1534.30 and 1566.23 95.5� 6.5 1.963� 0.045 0.045� 0.001 189 kHz
1531.70 and 1568.96 94.3� 5.6 1.589� 0.031 0.057� 0.002 186 kHz
1529.11 and 1571.69 99.2� 5.7 1.813� 0.051 0.047� 0.002 158 kHz
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heralding rates are shown in Fig. 5(c). The values of gð2ÞH ð0Þ
for heralded single photons on seven resonances are shown
in Table I.
Discussions and summary.—In this work, we show that

the GaNOI provides an important possibility for the
quantum photonic integrated circuit. On one hand, the
fabricated device exhibits a near-zero and flat anomalous
dispersion over a large wavelength range of more than
100 nm. This indicates a great potential for generating
multiple wavelength-paired correlated photon pairs, which
is a pivotal advancement toward large-scale quantum net-
works. In our current demonstration, we do not yet exhaust
the maximum number of the ring resonances, which could
provide us with eighteen wavelength-paired correlated
photon pairs and could be further increased by reducing
the FSR of the MRR. On the other hand, the GaNOI holds
considerable promise for all-on-chip quantum photonic
integrated circuits compared to existing platforms. The
on-chip integration of the pump laser could be realized on
GaNOI with optical gain and nonlinear optical process. For
instance, InGaN=GaN laser diodes operating at a wave-
length from 360 to 520 nm have been demonstrated [67],
which could be used for the generation of correlated photon
pairs via spontaneous parametric down-conversion (SPDC)
within 720 to 1040 nm. Besides, with a proper portion of
indium, the band gap energy of InGaN can be controlled
from 0.65 to 3.4 eV, corresponding to operating wavelength

365 to 1900 nm [68]. At the same time, the optical filters
for pump noise rejection and photon pair selection can also
be realized on the GaNOI. Besides, the GaNOI also allows
lattice-matched epitaxial deposition of Nb(Ti)N films for
the on-chip integration of SNSPD [69,70]. In our demon-
stration, although the GaNOI platform has shown to be
ground breaking for the generation of quantum light, the
Raman noise is also observed in our experiment. This is
mainly due to the defects from the lattice mismatching
between the GaN layer and the AlN buffer layer [46,71]
and should be further eliminated by growing thicker
GaN film on the buffer layer. See more details in the
Supplemental Material [56] Note2.
In summary, we have demonstrated the generation of

correlated photon pairs via SFWM in a GaN MRR for the
first time. By leveraging our advances in compound
semiconductor nanofabrication, the GaN MRR with a Q
factor of 0.43 × 106 is obtained with an FSR of 330 GHz.
Correlated photon pairs are generated in a wavelength
range over 100 nm with their quantum properties being
characterized by the coincidence measurement, the two-
photon interference, and the HBT measurement. A typical
two-photon interference visibility of 95.5� 6.5% and

heralded second-order autocorrelation gð2ÞH ð0Þ of 0.045�
0.001 are obtained, respectively. These results show that the
GaNOI platform has remarkable potential for the develop-
ment of all-on-chip QPIC.
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