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We investigate theoretically and numerically the dynamics of long-living oscillating coherent structures
—bi-solitons—in the exact and approximate models for waves on the free surface of deep water. We
generate numerically the bi-solitons of the approximate Dyachenko-Zakharov equation and fully nonlinear
equations propagating without significant loss of energy for hundreds of the structure oscillation periods,
which is hundreds of thousands of characteristic periods of the surface waves. To elucidate the long-living
bi-soliton complex nature we apply an analytical-numerical approach based on the perturbation theory and
the inverse scattering transform (IST) for the one-dimensional focusing nonlinear Schrödinger equation
model. We observe a periodic energy and momentum exchange between solitons and continuous spectrum
radiation resulting in repetitive oscillations of the coherent structure. We find that soliton eigenvalues
oscillate on stable trajectories experiencing a slight drift on a scale of hundreds of the structure oscillation
periods so that the eigenvalue dynamics is in good agreement with predictions of the IST perturbation
theory. Based on the obtained results, we conclude that the IST perturbation theory justifies the existence of
the long-living bi-solitons on the surface of deep water that emerge as a result of a balance between their
dominant solitonic part and a portion of continuous spectrum radiation.
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Formation of stable localized coherent structures—
solitons—is one of the key evolution scenarios of nonlinear
wave systems [1]. When such a system is Hamiltonian,
solitons emerge due to a balance between nonlinearity and
dispersion, while in nonconservative cases, an additional
balance between energy gain and loss comes into play [1–3].
Being described by nonlinear partial differential equations
(PDEs), systems with solitons can be seen in almost all fields
of physics—for example, in hydrodynamics, optics, and
plasmas [2,4]. While individual stationary solitons are
ubiquitous for nonlinear wave models, long-living multi-
soliton complexes are not so common and thus draw
particular attention and are of great interest for experimental
implementation. For example, a bound state of solitons has
been observed in mode-locked fiber lasers, Bose-Einstein
condensates, and specially designed optical waveguides
[5–8].
For a Hamiltonian wave model the presence of recur-

sive multisoliton behavior might be a signature of its
integrability or nearly integrable dynamics [9–12]. The
inverse scattering transform (IST) theory elucidates the
particlelike features of solitons in exactly integrable
nonlinear PDEs by proving that solitons correspond to
the time-invariant eigenvalue spectrum of an auxiliary
scattering problem [9,13]. For example, solitons of the

integrable one-dimensional nonlinear Schrödinger equa-
tion (NLSE) collide elastically, forming bouncing multi-
soliton complexes, and preserve their parameters during
the whole system evolution [14]. When integrability is
broken by adding weak extra terms to the model, solitons
can still form long-living but usually inelastic complexes
radiating incoherent waves, whose dynamics is described
by the IST perturbation theory [10,15,16].
We consider the Hamiltonian models of the 2D hydro-

dynamics with a free surface: (i) focusing NLSE [17],
(ii) Dyachenko-Zakharov envelope equation (DZE) [18],
and (iii) fully nonlinear equations for the R-V variables
(RVE) [19–22]. These models are the members of the
Hamiltonian hierarchy of equations for the free surface
water waves [17,23] in which the NLSE describes only the
weakly nonlinear narrow-banded wave trains while the DZE
captures many of the nonlinear effects presented in the full
model [17,18]. Comparative analysis of the behavior of
wave groups in the approximate DZE and the exact RVE
models provides insights into how the model objects are
expected to be seen in nature [24–26].
Numerical works revealed solitary waves for the DZE

and RVE models [27,28] observed later in water wave tank
experiments [29,30]. For certain parameters, pairwise colli-
sions of the DZE solitons do not produce any visible
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radiation [31], which can be detected only in multiple
collisions [32] demonstrating nearly integrable regimes of
the DZE model. In addition, recent numerical studies
discovered extremely long-living bi-solitons in both DZE
and RVE [33,34]. The theoretical description of such
recursive coherent complexes on the surface of a deep
fluid, their internal structure, and their interaction mecha-
nisms remains an open questions. To understand it, we
propose an analytical-numerical approach based on the IST
theory for our theoretical benchmark model: the NLSE. The
ISTanalysis unveils stable trajectories of soliton eigenvalues
and shows that the long-living bi-solitons on the surface of
deep water emerge as a result of a balance between their
dominant solitonic part and a portion of incoherent radia-
tion. Finally the IST perturbation theory demonstrates that
both the DZE and RVE bi-soliton oscillatory complexes
exist in nearly integrable regimes of the NLSE.
The original equations describing 2D hydrodynamics of

deep water waves propagating on the free surface of an
ideal incompressible fluid in the presence of gravity
represent the Laplace equation with kinematic and dynamic
boundary conditions at the surface:

ϕxx þ ϕyy ¼ 0 with ϕy → 0 at y → −∞;

ηt þ ηxϕx ¼ ϕy at y ¼ η;

ϕt þ ðϕ2
x þ ϕ2

yÞ=2þ gη ¼ 0 at y ¼ η: ð1Þ

Here, x and y are horizontal and vertical coordinates, t is
time, g is the free-fall acceleration, ηðx; tÞ is the shape of the
surface, ϕðx; y; tÞ is a hydrodynamic potential inside the
fluid. Classical problem (1) has been known since the 19th
century [35] and now represent a backbone of theoretical,
numerical, and experimental studies [36–39].
The Hamiltonian of system (1) is [17]

H ¼ 1

2

Z
dx

Z
η

−∞
j∇ϕj2dyþ g

2

Z
η2dx: ð2Þ

For the numerical solution of the fully nonlinear equa-
tions we apply conformal mapping of the fluid domain
z ¼ xþ iy confined by a free boundary onto the lower half-
plane of the new complex variable w ¼ uþ iv at v ≤ 0. In
terms of special analytical functions Rðu; tÞ and Vðu; tÞ,
original equations (1) turn into the RVE

Rt ¼ iðURw − RUwÞ;
Vt ¼ iðUVw − RBwÞ þ gðR − 1Þ; ð3Þ

with the following boundary conditions: R → 1, V → 0 at
v → −∞; see [19,20,22] for the conformal mapping
technique and Eq. (3) derivation. We define here U ¼
P̂ðVR� þ V�RÞ and B ¼ P̂ðVV�Þ, where P̂ ¼ ð1þ iĤÞ=2,
and Ĥ is the Hilbert transform.

Assuming the wave steepness to be small, μ ¼ ηx ≪ 1,
one can expand Hamiltonian (2) up to the fourth order of
ηðx; tÞ and ϕðx; η; tÞ and find the DZE for an approximate
description of the water wave train in terms of canonical
complex envelope variable Cðx; tÞ [18]:

iCt ¼ θ̂k0þk

�
ðω̂k0þk − ω̂k0ÞCþ i

∂ωk

∂k

����
k0

Cx

þ k20ðjCj2CÞ þ i
�
k̂ðjCj2ÞCþ ijCj2Cx

�
x

− ik0
�
CðjCj2Þx þ 2jCj2Cx − ik̂ðjCj2ÞC��: ð4Þ

Operators k̂ and ω̂k are multiplied by jkj and ffiffiffiffiffiffiffiffi
gjkjp

in
Fourier space, respectively, θ̂k is the Heaviside step
function, k0 is a characteristic carrier wave number, and
ωk0 ¼

ffiffiffiffiffiffiffi
gk0

p
is the corresponding linear frequency related

to characteristic period of the waves τ0 ¼ 2π=ωk0 . Models
(3) and (4) being advantageous for analytical and numerical
treatment are used in fundamental studies and find appli-
cations in deterministic wave forecasting [40–43].
Under the additional assumption of narrow-band wave

spectrum, we obtain the remaining model of our hierarchy:
the NLSE written in terms of complex envelope variable
qðx; tÞ,

iqt þ qxx=2þ jqj2q ¼ 0: ð5Þ

Being integrable, the NLSE exhibits exact multisoliton
solutions, qSNðx; tÞ, where N is the number of solitons. The
simplest single soliton solution represents the well-known
expression

qS1ðx; tÞ ¼ a1
exp½iv1ðx− x1Þ þ iða21 − v21Þt=2þ iθ1�

cosha1ðx− v1t− x1Þ
; ð6Þ

with real-valued parameters a1, v1 for soliton amplitude
and velocity and θ1 and x1 for its phase and position.
We generate long-living bi-solitons of the DZE and RVE

numerically, which oscillate without significant loss of
energy for hundreds of the structure periods T, which is
∼105τ0 in dimensional units, similar to that in [27,28,34].
We set initial conditions using the two-soliton solution
qS2ðxÞ of the NLSE characterized by different soliton
amplitudes and zero velocities. Then, we substitute such
standing bi-soliton complex into the considered equations.
Not being a solution to the DZE or RVE, the initial structure
emits incoherent waves at the beginning of the evolution.
We absorb these waves by damping at the edges of the
computational domain, allowing the structure to gradually
find its stable, long-living state. Later, we turn off the
damping and observe that the remaining structure prop-
agates stably for hundreds of characteristic structure periods
without losing energy. We present an example of
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spatiotemporal oscillating dynamics of the DZE bi-soliton
in Fig. 1(a) in terms of dimensionless wave field envelope.
In addition, Fig. 4 shows the free surface profiles in
dimensional units of bi-soliton in the RVE at minimum
and maximum amplitude. More examples of the bi-soliton
dynamics including animation of the wave field evolution
and details on the numerical procedure used are given in
Supplemental Material [44].
Our approach to analyzing bi-solitons starts with writing

the NLSE for the complex-valued wave field envelope
qðx; tÞ with the right-hand side (rhs) in a general form

NLSE½qðx; tÞ� ¼ rhs½qðx; tÞ�;
NLSE½qðx; tÞ�≡ iqt þ qxx=2þ jqj2q: ð7Þ

We obtain the DZE and RVE wave fields in terms of
qðx; tÞ by applying the corresponding transformations
between models (3), (4) and the NLSE:

qðDZEÞ ¼ qfCðx; tÞg; qðRVEÞ ¼ qfRðu; tÞ;Vðu; tÞg: ð8Þ

See Supplemental Material [44] for details. We can directly
substitute qðDZE=RVEÞ into the NLSE and calculate not zero,
but residual, which is exactly the rhs for (7):

rhsðDZE=RVEÞ ¼ NLSE½qðDZE=RVEÞ�: ð9Þ

When rhs≡ 0, system (7) is integrable and associated
with the following linear auxiliary Zakharov-Shabat system
for a vector wave function Φ ¼ ðϕ1;ϕ2ÞT:

L̂Φ ¼ λΦ; L̂ ¼
�

i∂x −iqðxÞ
−iq�ðxÞ −i∂x

	
; ð10Þ

where λ ¼ ξþ iχ is the time-independent complex spectral
parameter and T means transposition. Solving the scatter-
ing problem for (10) at certain time, one finds the wave
field IST spectrum (scattering data) consisting of a set of

discrete eigenvalues and norming constants fλn; ρng, n ¼
1;…; N with χn > 0 and the reflection coefficient rðξÞ. The
first discrete part of the IST spectrum corresponds to N
solitons having parameters connected to the set fλn; ρng as

ξn ¼ vn=2; χn ¼ an=2;

ρn ¼ 2iχn exp½iπ − 2iλnxn − iθn�: ð11Þ

Meanwhile, the reflection coefficient rðξÞ being associated
with the continuous part of L̂ spectrum describes nonlinear
dispersive radiation.
The IST theory proves that fλng and jrðξÞj do not

change when qðxÞ evolves according to the NLSE and only
soliton phases and positions and the phases of the radiation
run trivially in time [9,11]. As such, the IST spectrum
represents a nonlinear analog of conventional Fourier
harmonics that is broadly used in nonlinear wave field
analysis [26,38,46–52]. When rðξÞ ¼ 0 the wave field is
composed of solitons only and its evolution can be
described with the exact N-soliton solution qSNðx; tÞ; see
[9,53] and Supplemental Material [44] for background on
the IST formalism and exact multisoliton formulas.
In a general case when rhs ≠ 0, system (7) is no longer

integrable and the IST eigenvalues are not stationary.
However, when the NLSE part in (7) dominates on the
rhs, one can apply the perturbation theory and express the
evolution of the eigenvalues as [54,55] follows:

∂λ

∂t
¼ hΦ†; crhsΦi

hΦ†;Φi ; crhs ¼ �
0 −rhs

rhs� 0

	
; ð12Þ

where Φ† ¼ ðϕ�
2;ϕ

�
1ÞT and the scalar product hf; gi ¼R∞

−∞ f�gdx. Formulation (7) together with equations (10)
and (12) are the basis of the classical IST perturbation
theory for which many exactly solvable cases of certain
rhs’s have been studied previously; see [10,56] and also
some recent works [57,58]. However, many physically
important, nearly integrable systems are left without con-
sideration because their rhs is too complicated.
In our approach we do not require the rhs term in an

explicit form and instead deal with discrete wave fields
qðDZE=RVEÞðxi; tjÞ obtained from simulations and use a
combination of analytical and numerical IST tools to
analyze them. We begin with bi-solitons in the DZE and,
at first, solve the scattering problem for a series of time-
evolving wave field profiles numerically using the algo-
rithms [59–61]; see details in Supplemental Material [44].
We find two discrete eigenvalues λ1ðtjÞ and λ2ðtjÞ and
nonzero reflection coefficient rðξ; tjÞ as functions of tj. The
eigenvalues corresponding to solitons of the bi-soliton
structure oscillate on stable trajectories during hundreds
of T; see Fig. 1(b). Note, that solitons have nonzero
velocities describing by the real part of λ. With the computed
full set of scattering data, we represent the wave field at each

(b)(a)

FIG. 1. Nonlinear behavior of the DZE bi-soliton. (a) Spatio-
temporal diagram of the wave field envelope jqðDZEÞj with
characteristic oscillation period T ≈ 24.5. (b) Stable trajectories
of soliton eigenvalues obtained as a union of the computed time
series of λðtjÞ. Blue and red lines correspond to two complete
cycles of the bi-soliton oscillations separated by 200 T.
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moment of time as two NLSE solitons and continuous
spectrum radiation. To measure the impact of each scattering
data component in the wave field composition, we use the
NLSE integral of motion I ¼ R∞

−∞ jqj2dx, which can be
evaluated individually for discrete spectrum eigenvalues as
IDS and continuous spectrum ICS within the IST [9], so that
I ¼ IDS þ ICS; see details in Supplemental Material [44].
At the edge trajectory points, the bi-soliton exhibits

minimum or maximum of its intensity; see Fig. 2. We find
that at the minimum intensity configuration, the impact of
the continuous spectrum ICS=I ≈ 0.005 is negligible, and
the wave field represents almost the exact NLSE bi-soliton;
see Fig. 2(a). During the structure evolution, the role of the
radiation increases, reaching its maximum ICS=I ≈ 0.036 at
the other edge point; see Fig. 2(b). In other words an NLSE
bi-soliton taken at the minimum intensity configuration
evolves as a long-living oscillating complex stabilized by a
minor radiation gradually increasing up to the high-ampli-
tude wave field configuration. In contrast, an arbitrary
choice of soliton eigenvalues leads to a formation of
unstable trajectories that we illustrate in Supplemental
Material [44]. The two solitons and radiation are in periodic
energy exchange, which we demonstrate in Fig. 2(b) using
time dependence of I for each part of the scattering data.
We measure the radiation only in the space region of the

bi-soliton having width∼70.0; meanwhile, the impact of the
rest part of the computational domain, where some small
wave field oscillations can also be seen, contributes ∼10−3I,
and thus can be neglected. The latter means that the bi-
soliton exists on its own and does not participate in
resonances with continuous waves typical for some non-
linear wave systems [62–64].
We find that the major dynamics of the DZE bi-solitons

can be described by the exact two-soliton solution of the
NLSE with dynamically changing eigenvalues and norm-
ing constants as

qðDZEÞðx; tjÞ ¼ qS2ðx; tj; fλnðtjÞ; ρnðtjÞgÞ: ð13Þ

Here, fλnðtjÞ; ρnðtjÞg, n ¼ 1, 2 are the set of the computed
time series of the discrete IST spectrum. Figure 2 illustrates
the model (13) and its comparison with the initial bi-soliton
wave fields. Then we compute the soliton eigenvalue
changes at each time step as ΔλðtjÞ ¼ λðtjþ1Þ − λðtj−1Þ,
and compare them with predictions of the perturbation
theory. We find that Eq. (12) provides an excellent descrip-
tion for both solitons; see Fig. 3. To evaluate the integral in
Eq. (12) we use numerically computed rhsðDZEÞðxi; tjÞ and
wave functions Φðxi; tjÞ; see details in Supplemental
Material [44]. Our analysis shows that the DZE bi-soliton
complex exists in a nearly integrable regime.
Finally, we study the long-living RVE bi-soliton and

obtain qualitatively similar results as for the DZE case.
Figure 4(a) shows the surface elevation in physical units
corresponding to the minimum and maximum of the RVE
bi-soliton intensity. Applying transformation (8) we obtain
the bi-soliton envelope qðRVEÞðx; tjÞ oscillating with T ≈
30.0 and compute the soliton eigenvalue trajectories; see
Fig. 4(b). The trajectories are slightly perturbed in com-
parison to the DZE case and experience a minor drift on a
scale of hundreds of bi-soliton oscillation periods. The rest
of the IST analysis repeats our results for the DZE and is

FIG. 2. Further IST analysis of the DZE bi-soliton. (a) Spatio-
temporal dynamics of the two-soliton model (13). (b) Time
evolution of I for each component of the IST spectrum: red and
blue lines correspond to λ1 and λ2, respectively, while the green
line shows the impact of continuous spectrum radiation. Panels
(c) and (d) show the DZE wave field (red solid lines) at minimum
(c) and maximum (d) amplitude, together with the model (13)
(black dashed lines). Insets in (c) and (d) show real and imaginary
parts of the wave fields and also indicate the eigenvalue locations
by black squares and dots.

FIG. 3. Changes of discrete eigenvalues Δλj ¼ Δξj þ iΔχj at
each time step tj within one oscillation period T of the DZE bi-
soliton. Panels (a) and (b) correspond to Δξ and Δχ respectively.
Blue dots show the direct numerical computation of soliton
eigenvalues changes for each subsequent wavefield qðtjÞ and
qðtjþ1Þ. Red circles correspond to predictions of the perturbation
theory provided by Eq. (12).
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presented in Supplemental Material [44]. Note that in the
case of the RVE bi-solitons, the IST perturbation theory
works only quantitatively, which is expected for the fully
nonlinear model due to the presence of the complicated
structure of its rhs.
The IST analysis of the long-living bi-solitons in the

deep water models shows that these oscillatory complexes
exist in a stable nearly integrable regime and can be
described within the IST perturbation theory. In general,
the governing DZE and RVE models are far from being
integrable; however, for the bi-solitons all the rhs terms are
small throughout the whole oscillation period T. The
numerically computed time series of the IST spectrum
allows us to accurately reveal the recursive dynamics of the
bi-solitons preserving at the scale of hundreds of T. We also
show that the bi-soliton complex is stabilized by minor
radiation and a nonzero velocity difference between sol-
itons; both of them gradually increase up to the high-
amplitude wave field configuration so that the two discrete
components and continuous part of the scattering data are
in periodic energy and momentum exchange.
In contrast to the approximately solvable models with

weakly interacting solitons [65–70], the bi-solitons con-
sidered here are fully overlapping and governed by
equations of type (7) with such complicated rhs’s that
cannot be studied analytically with the perturbation frame-
work (12). Here, we propose a perspective of using IST
theory in such nonsolvable cases based on the combination
of the perturbation approach, exact multisoliton solutions,
and numerical IST tools. Our approach provides an IST
interpretation of the interaction mechanism for the deep
water bi-solitons and opens questions for further studies.
One of them is identifying a complete set of initial soliton
eigenvalues corresponding to long-living recursive bi-
soliton dynamics. Another question concerns the connec-
tion of the presented approach with general methods of
finding periodic solutions to nonlinear PDEs [71,72].
Besides localized solitonic wave fields, considering a

continuous wave background is of fundamental interest
for the comparative study of the deep fluid models in the
light of the proposed IST approach [32,73,74]. In particu-
lar, a combination of the IST with Melnikov’s analysis
being applied to the DZE and RVE can shed new light on
behavior of the so-called breathers—solitons living on the
background [75–78]. Our results can be generalized to
other physical systems, such as optical waveguides
described in the leading order by the NLSE [4,56], and
also applied to analyze experimental data.
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