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We investigate the dynamics of a one-dimensional spin system with facilitation constraint that can be
studied using Rydberg atoms in arrays of optical tweezer traps. The elementary degrees of freedom of the
system are domains of Rydberg excitations that expand ballistically through the lattice. Because of
mechanical forces, Rydberg excited atoms are coupled to vibrations within their traps. At zero temperature
and large trap depth, it is known that virtually excited lattice vibrations only renormalize the timescale
of the ballistic propagation. However, when vibrational excitations are initially present—i.e., when the
external motion of the atoms is prepared in an excited Fock state, coherent state or thermal state—resonant
scattering between spin domain walls and phonons takes place. This coherent and deterministic process,
which is free from disorder, leads to a reduction of the power-law exponent characterizing the expansion of
spin domains. Furthermore, the spin domain dynamics is sensitive to the coherence properties of the atoms’
vibrational state, such as the relative phase of coherently superimposed Fock states. Even for a
translationally invariant initial state the latter manifests macroscopically in a phase-sensitive asymmetric
expansion.
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Introduction.—One of the central topics in quantum
many-body physics relates to the study of transport proper-
ties of excitations, correlations, or energy,which allows us to
categorize models into different classes [1,2]. For example,
chaotic systems generically feature diffusive transport [3–7],
while disorder may induce subdiffusive dynamics or even
localization [8–11]. On the contrary, ballistic transport and
diffusive dynamics are typically featured in free and inter-
acting integrable systems [12–20], since they are charac-
terized by an extensive number of local conserved charges
[21]. An intermediate behavior between diffusive and
ballistic dynamics has been observed, also experimentally
[22–26], in a class of integrable models with certain
additional symmetries [27–32], which appear to lie in the
Kardar-Parisi-Zhang universality class [33].
Recently, transport properties have also been studied in

quantum systems subject to kinetic constraints [34–40].
These are generally characterized by slow dynamics and
reduced transport due to the scarce connectivity between
different many-body states [41–44]. Physical manifesta-
tions of such models can be efficiently implemented in
Rydberg quantum simulators, in which trapped atoms,
excited to high-lying electronic states, feature strong
state-dependent dipolar interactions [45–48]. Thanks to
their versatility, these experimental platforms have led to
several breakthroughs in the fields of quantum simulation
and quantum computation [49–57]. Concomitant to the

strong electrostatic interactions are mechanical forces, that
couple the internal atomic degrees of freedom to the
external motional ones [58,59]. On the one hand, these
forces can—when uncontrolled—be sources of undesired
incoherent effects, such as dissipation and heating [60–62].
On the other hand, coherent spin-phonon couplings allow
us to engineer long-range multibody interactions [63], to
implement cooling protocols [64], to explore polaron
physics [65–69], and to realize artificial molecular systems
[70,71]. The impact of coherent lattice vibrations on the
nonequilibrium dynamics of kinetically constrained quan-
tum systems is currently unexplored. However, with the
recent advancements in the domain of Rydberg quantum
simulation platforms, such studies will be soon within
reach [72].
In this work we explore the dynamics of elementary

degrees of freedom (spin domains) in a chain of Rydberg
atoms subject to the facilitation (anti-blockade) constraint.
We show that the interaction with lattice vibrations man-
ifests in an alteration of the power-law exponent character-
izing the expansion of spin domains. At zero temperature,
the exponent does not depend on the spin-phonon coupling
strength, provided that it is sufficiently weak, as scattering
is off resonant. However, when vibrational excitations
are initially present, resonant scattering between phonons
and spin domains leads to a quantitative decrease of the
exponent. Coherent spin-phonon interactions thus may
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inhibit excitation transport, thereby providing a connection
to disorder-free settings that display localization phenom-
ena [73,74]. Finally, we show that the spin domain
expansion dynamics is sensitive to the phase of the vibra-
tional states, which causes an asymmetric expansion even
in a translationally invariant system [75,76].
Model.—We consider a one-dimensional chain of N

atoms, each one loaded in an optical tweezer trap and
whose electronic structure is modeled as a two-level system
[see Fig. 1(a)]. The state j↓i denotes the ground state, while
j↑i represents the Rydberg (excited) state. The traps, which
are separated by a nearest neighbor distance a0, have a trap
frequency ω. The atoms are driven by a laser with Rabi
frequency Ω and detuning Δ, which couples the ground
state to the Rydberg state. Two atoms in the Rydberg state,
placed at sites j and k, interact via a distance dependent
potential of the form Vðrj; rkÞ ¼ Cγjrj − rkj−γ . Here γ is
the characteristic power law exponent (dipole-dipole inter-
action: γ ¼ 3, van der Waals interaction: γ ¼ 6). The
Hamiltonian of the system is then given by (ℏ ¼ 1)

H ¼
XN

j¼1

�
Ωσxj þ Δnj þ

X

k<j

Vðrj; rkÞnjnk þ ωa†jaj

�
;

where σx ¼ j↑ih↓j þ j↓ih↑j is the spin flip operator and
n ¼ j↑ih↑j projects onto the Rydberg state. Writing the
position fluctuations in the traps in terms of the bosonic
operators as δxj ¼ ða†j þ ajÞ=

ffiffiffiffiffiffiffiffiffiffi
2mω

p
and neglecting the

interactions beyond the nearest-neighbor ones (assumed to
be small compared to Ω, see Supplemental Material [77]),
yields the simplified Hamiltonian [67,68]

H ¼
XN

j¼1

n
Ωσxj þ Δnj þ ωa†jaj

þ
h
Vð0Þ
NN − κ

�
a†j þ aj − a†jþ1 − ajþ1

�i
njnjþ1

o
; ð1Þ

where periodic boundary conditions are adopted. Here Vð0Þ
NN

is the interaction between two excited nearest-neighboring
atoms when they are located at the center of the respective
traps and κ ¼ γCγ=ðaγþ1

0

ffiffiffiffiffiffiffiffiffiffi
2mω

p Þ is the spin-phonon cou-
pling constant, which is proportional to the gradient of the
interaction potential evaluated at the lattice spacing a0 [see
Fig. 1(a)]. Such spin-phonon coupling accounts for the
mechanical forces arising from the interaction between
neighboring Rydberg excitations. These forces displace the
atoms from the center of the respective traps only when
they are in the Rydberg state, thereby coupling the internal
(spin) degrees of freedom to the external (motional) ones.
Facilitated dynamics.—We consider the situation in

which the dynamics of the Rydberg chain is subject to
the facilitation (antiblockade) constraint [84–90]. This is
obtained when the otherwise detuned laser is put on
resonance by the single-atom energy shift induced by

the Rydberg interaction, i.e., Δþ Vð0Þ
NN ¼ 0. Under this

condition, ground state atoms that are next to an already
excited atom get resonantly coupled to the Rydberg state.
The further assumption that both the next-nearest-neighbor
interaction and the Rabi frequency are much smaller than
the detuning, Vðr0j ; r0jþ2Þ ≪ jΔj and Ω ≪ jΔj, leads to a
constrained dynamics that conserves the number of domain
walls delimiting domains of consecutive Rydberg excita-
tions. This drastically reduces the connectivity between the
many-body states, and the Hilbert space is decomposed into
disconnected sectors, labeled by the number of domain
walls [91].

(a) (b)

(d)(c)

FIG. 1. Spin-phonon scattering in a Rydberg chain. (a) Atoms
are treated as (fictitious) spins where the spin-down state is the
ground state and the spin-up state is the Rydberg state. A laser
with Rabi frequency Ω and detuning Δ excites the atoms to the

Rydberg state under the facilitation condition Δþ Vð0Þ
NN ¼ 0, i.e.,

the detuning is chosen such that it cancels the nearest neighbor

interaction Vð0Þ
NN. Atoms are trapped in a state-independent

harmonic potential with frequency ω and δxj is the deviation
of the jth atom from the center of the respective trap. Spin and
motional degrees of freedom are coupled, with spin-phonon
coupling constant κ which is proportional to the gradient of the
potential V evaluated at the lattice spacing a0. (b) Ballistic
expansion of a spin domain (blue) in the absence of spin-phonon
coupling: an excited Rydberg atom facilitates the excitation of the
neighboring one at a rate proportional to Ω. (c) Spin-phonon
scattering: the vibrational state of each atom is prepared in the
ground state (Gaussian profile), except for one atom which is
initialized in a higher-lying Fock state. When the domain wall
reaches this site, it scatters off the phonon excitation. (d) Numeri-
cal simulation of the spin-phonon scattering, where the atom at
site j ¼ 10 is initialized in the Fock state j2i and all others in
Fock state j0i. Scattering (backreflection) of the domain wall
reduces the Rydberg density hnji beyond j ¼ 10 (orange dashed
line). This is clearly seen in the inset which shows the Rydberg
density hnji at time Ωt ¼ 9 (white line in main plot) with the
phonon excitation at site j ¼ 10 in Fock state j2i (brown points)
and without it (blue points).
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Here, we focus on the single domain sector, i.e., the
sector with two domain walls, and initially prepare a spin
domain with r0 consecutive Rydberg excitations. To
evaluate its dynamics, we perform numerical simulations
of Hamiltonian (1) utilizing the time-evolving block
decimation algorithm (TEBD) [78,92–97]. In the absence
of spin-phonon coupling, i.e., κ ¼ 0, the two domain walls
propagate freely along the lattice as free fermions [98]. This
results in a ballistic expansion of the spin domain whose
size increases linearly in time, as sketched in Fig. 1(b).
To quantitatively assess this expansion, we evaluate the
dynamics of the Rydberg density variance σ, defined as

σðtÞ ¼
XN

j¼1

j2
hnjðtÞi
N ðtÞ −

�XN

j¼1

j
hnjðtÞi
N ðtÞ

�2

; ð2Þ

where h…i denotes the quantum expectation value and
N ðtÞ ¼ P

N
k¼1 hnkðtÞi is the total Rydberg density. The

density variance (2), which can be measured experimen-
tally [99], quantifies the spreading dynamics of the spin
domain. It is connected to the mean square displacement
used in Refs. [100–102] and to the width of the density
propagator studied in Ref. [103] for a disordered fermionic
model. The density variance is expected to increase over
time as

δσðtÞ ¼ σðtÞ − σð0Þ ∼ tβ; ð3Þ

where σð0Þ ¼ ðr20 − 1Þ=12 is the density variance of the
spin domain at t ¼ 0. When κ ¼ 0, i.e., in the absence of

spin-phonon coupling, we expect β ¼ 2 (free fermions).
This is indeed the case, as shown in the first two panels of
Figs. 2(a) and 2(b) where we plot the time evolution of the
Rydberg density and δσðtÞ, respectively. We note a cross-
over time that separates two regions characterized by
two different exponents. The short-time behavior provides
β ≈ 1.98 reproducing our expectation, while for larger
times the exponent decreases to β ≈ 1.63. This behavior
is a consequence of the conservation of the number of
domain walls: throughout the facilitation dynamics, the
domain walls cannot coalesce and therefore are subject to a
hard-core repulsive potential [88]. This translates into the
interruption of the ballistic expansion when the two domain
walls are about to collide, which happens at Ωt ≈ 3. Note
that this effect is exclusively due to the finite size of the
initial spin domain [77].
In the presence of spin-phonon coupling, κ ≠ 0, we find

that the expansion of the spin domain strongly depends on
the initial state of the phonons. In particular, when the
atoms are initially prepared in their vibrational ground state
⊗N

j¼1 j0i, the initial ballistic expansion is maintained and
the effect of the spin-phonon coupling is limited to a
renormalization of the expansion velocity [67,68]. On the
contrary, when the atoms are initially prepared in the first
Fock state ⊗N

j¼1 j1i, the expansion of the domain changes
dramatically and the exponent of the Rydberg density
variance drops to β ≈ 1.73 and β ≈ 1.22 before and after
the crossover time (see Fig. 2).
Effective model for the spin-phonon scattering.—The

reason for the alteration of excitation transport in the

(a) (b)

FIG. 2. Expansion of spin domain in the absence and presence of phonons. (a) Rydberg density hnji for a spin domain initialized with
r0 ¼ 9 Rydberg excitations and centered at j ¼ 0. In the absence of spin-phonon coupling (κ ¼ 0), the domain expands approximately
ballistically, independently on whether the atoms are initially prepared in their vibrational ground state, j0i (left column), or first Fock
state j1i (right column). When the spin-phonon coupling is switched on (we consider κ ¼ 3.0 Ω), ballistic expansion persists in the left
column, while a drastic change is visible on the right. The reason is that when atoms are prepared in their vibrational ground state only
virtual transitions to higher-lying phonon states take place, which merely renormalizes the ballistic propagation speed. In the presence of
initial phonon excitations, however, coherent spin-phonon scattering takes place, which alters the expansion dynamics dramatically.
(b) The corresponding Rydberg density variance difference δσðtÞ, Eq. (3). The power-law exponent changes at Ωt ≈ 3, where the initial
spin domain has dissolved [see violet dashed line in the top left panel]. A clear change of exponent is observed in the bottom right panel
(κ ¼ 3.0 Ω, initial vibrational state of all atoms j1i). Data are obtained via TEBD simulations of the dynamics under Hamiltonian (1) for
ω ¼ 8 Ω, Δ ¼ 500 Ω. The maximum number of phonons per site is truncated to 7.
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presence of initial phonon excitations is resonant spin-
phonon scattering [see Figs. 1(c)–1(d)], for which we will
construct an effective model. Since the facilitation dynam-
ics conserves the number of domain walls, the single spin
domain can expand or shrink, but it is not allowed to split
into two domains or disappear. The state of such a spin
domain can therefore be characterized with only two
coordinates, namely, its center-of-mass (c.m.) position
and its relative coordinate (or the number of excitations
it contains). The introduction of these two coordinates is
particularly advantageous because it allows us to reduce the
complex many-body dynamics to a simpler two-body
dynamics. As outlined in the Supplemental Material [77],
we formulate Hamiltonian (1) in terms of these two
coordinates. By further decomposing the c.m. coordinate
and the boson operator aj into Fourier modes, respectively
labeled by q and Ap, and after applying various
unitary transformations, one gets the Hamiltonian
H ¼ P

N
q¼1 jqi hqj ⊗ Hq, with

Hq ¼ 2JqðfNpgÞ
XN−1

k¼1

cos

�
kπ
N

�
jki hkj þ ω

X

p

Np

þ κ
X

k;k0;p

fk;k0;pjki hk0j ⊗ ðAp þ A†
pÞ; ð4Þ

where JqðfNpgÞ ¼ 2Ω cos ½ðπ=NÞðqþP
p pNpÞ� and

Np ¼ A†
pAp. The first term provides a set of quasiparticle

excitations labeled by their quasimomentum k, whose
dispersion relation is connected to the expansion speed
of the spin domain. Their interaction with the phonons is
encoded in the third term, where fk;k0;p are the spin-phonon
coupling matrix elements that are derived in the
Supplemental Material [77]. This spin-phonon coupling
term is responsible for the change in the expansion of the
spin domain shown in Fig. 2. For κ ¼ 0 the free dynamics
of the quasiparticles results in the visible light cone
emanating from the boundaries of the initial domain. In
contrast, even for moderate values of κ=ω, the presence of
phonon excitations in the initial state drastically changes
the dynamics of the domain. In order to analytically explore
this regime, we note that the spin-phonon coupling term
is the only one that does not conserve the total number
of phonon excitations Nphon ¼

P
phNpi. Therefore, when

jκj ≪ ω, the subspaces with different Nphon are only
weakly coupled, making Nphon an approximately good
quantum number. In this regime, we can derive an
effective Hamiltonian that describes the facilitation
dynamics in a given phonon subspace. This is formally
accomplished by applying a Schrieffer-Wolff transforma-
tion [104] to Hamiltonian (4) so that we obtain an effective

Hamiltonian, HðqÞ
eff , valid in each of the phonon subspaces,

given by [77]

HðqÞ
eff ¼ 2JqðfNpgÞ

XN−1

k¼1

cos

�
kπ
N

�
jkihkj þ ω

X

p

Np

− κ2
X

k;k0
Fk;k0 ðfApgÞjkihk0j þOðκ3Þ: ð5Þ

This equation shows that the phonons mediate an effective
interaction between quasiparticles, with matrix elements
Fk;k0 ðfApgÞ. These contain terms like A†

mAn, which have
nonzero matrix elements only if Nphon > 0 [77].
Therefore, when phonon excitations are already present
in the initial state, these terms mediate additional inter-
actions between quasiparticles that would not be present
if the atoms were initialized in their vibrational ground
state [68]. This is consistent with the numerical results,
shown in the bottom panels of Fig. 2, that attribute the
inhibition of the ballistic spin domain expansion to the
presence of vibrational excitations in the initial state.
Phase sensitivity of spin-phonon scattering.—In the

following we show that the coherence of spin-phonon
scattering can be observed macroscopically. To this end we
consider the situation in which the vibrational state of all
the atoms is initially prepared in a coherent superposition
of Fock states j0i and j1i, as jφi ¼ 1=

ffiffiffi
2

p ðj0i þ eiφj1iÞ,
which is specified by the phase φ∈ ½0; 2πÞ. Despite being
initialized in a translationally invariant state, the spin

(a)

(b)

(c)

FIG. 3. Phase sensitivity of spin-phonon scattering. (a) Expan-
sion of the spin domain from the initial state with r0 ¼ 2 Rydberg
excitations. All the atoms are initially prepared in the vibrational
state jφ ¼ π=2i, giving rise to the position distribution in the trap
shown in the right. The value of the Rydberg density hnji remains
symmetric around the c.m. of the spin domain at all times. (b),
(c) Asymmetric domain expansion when the vibrational state of
the atoms is initially prepared in jφ ¼ 0i and jφ ¼ πi, respec-
tively. The asymmetry, quantified by δnj ¼ hnji − hn−j−1i, is due
to the fact that the initial state is not symmetric under the
operation k → N − k and ak → −aN−k, which is, instead, a
symmetry of the Hamiltonian. The simulations are carried out
with ω ¼ 8, Δ ¼ 200, κ ¼ 4 Ω and the maximum number of
phonons per site is truncated to 3.
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domain expands generically in an asymmetric fashion
around its initial position. This is seen in Fig. 3. The
asymmetry is controlled by the phase: for φ ¼ π=2 the spin
domain expands symmetrically, for φ ¼ 0 (φ ¼ π) the two
domain walls propagate differently, with the right (left)
front showing a larger Rydberg density. The emergence
of this asymmetric expansion is a consequence of the fact
that the initial state is not invariant under the operation
k → N − k and ak → −aN−k, which is, however, a sym-
metry of the Hamiltonian.
Summary and outlook.—We investigated the role of spin-

phonon interaction on the nonequilibrium dynamics of
Rydberg excitations in a chain of trapped atoms subject to
the antiblockade constraint. While aspects of our study are
certainly idealized compared to the experimental state-of-
the art, e.g., we assume state-independent trapping, we
could identify coherent spin-phonon scattering as a mecha-
nism that qualitatively alters the propagation of elementary
excitations. In the future, it would be interesting to consider
the impact of these processes in a many-body setting, by
lifting the restriction to the single spin domain sector. Here
one could ask whether the resulting complex spin-boson
system supports the formation of localized many-body
states in a disorder-free setting. Exploring this regime,
which due to the huge Hilbert space size is challenging to
treat on classical computers, could be an interesting use
case for the next generation of quantum simulators.
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