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We find an intriguing relation between a class of three-dimensional nonunitary topological field theories
(TFTs) and Virasoro minimal modelsMð2; 2rþ 3Þ with r ≥ 1. The TFTs are constructed by topologically
twisting 3D N ¼ 4 superconformal field theories (SCFTs) of rank-0, i.e., having zero-dimensional
Coulomb and Higgs branches. We present ultraviolet (UV) field theory descriptions of the SCFTs with
manifest N ¼ 2 supersymmetry, which we argue is enhanced to N ¼ 4 in the infrared. From the UV
description, we compute various partition functions of the TFTs and reproduce some basic properties of the
minimal models, such as their characters and modular matrices. We expect more general correspondence
between topologically twisted 3d N ¼ 4 rank-0 SCFTs and 2D nonunitary rational conformal field
theories.
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Introduction.—Two-dimensional rational conformal
field theories (RCFT) have played essential roles in a wide
range of physical systems, including critical phenomena in
statistical physics and string theory. They represent the
simplest class of theories with conformal symmetries,
which are characterized by the property that the Hilbert
space decomposes into a finite sum of the vector spaces,

H ¼ ⨁
α;ᾱ

Mα;ᾱVα ⊗ V ᾱ; ð1Þ

where Vα and V ᾱ are representations of some chiral algebra
A and Ā. The most extensively studied examples are
Virasoro minimal models. These describe various 2D
statistical systems at critical points (e.g., Ising model),
including nonunitary cases (e.g., Lee-Yang model).
It is well known that the chiral algebraA of a 2D unitary

RCFT describes the gapless chiral edge modes of a 3D
topological field theory (TFT) [1]. While this bulk-
boundary correspondence has been thoroughly investigated
for unitary theories over the past few decades, what

happens for nonunitary theories has remained notably
unclear.
In this Letter, we construct a novel class of 3D TFTs,

which are expected to support nonunitary two-dimensional
rational chiral algebras on their boundaries. We argue that
these 3D TFTs can be constructed from a certain family of
3D N ¼ 4 superconformal field theories (SCFTs). A key
characteristic of these SCFTs is that they are rank-0, i.e.,
their Coulomb and Higgs branches are zero dimensional.
The first examples of such theories were discovered
in [2,3].
In general, these 3D theories do not admit a Lagrangian

description that preserves the full N ¼ 4 supersymmetry.
Instead, we will present an ultraviolet (UV) field theory
description with manifest N ¼ 2 supersymmetry which
flows to an infrared (IR) fixed point with enhanced
supersymmetry. Each N ¼ 4 theory at the fixed point
admits two topological twists [4] which produce two
distinct 3D TFTs. These topological theories are in general
nonunitary and do not have local operators.
Despite the absence of a Lagrangian description of the IR

theory, the N ¼ 2 UV description enables exact compu-
tations of various observables in the topologically twisted
theories. These computations allow us to extract the data of
the corresponding boundary algebra, such as its characters
and modular data.
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For concreteness, in this Letter, we focus on a simple
class of TFTs that reproduce the data of nonunitary
Virasoro minimal models Mð2; 2rþ 3Þ for r ≥ 1.
However, we expect that this correspondence exists for a
more general class of rank-0 theories and nonunitary
RCFTs. We will discuss their construction and classifica-
tion in an upcoming paper [5].
A class of 3D N ¼ 4 rank-0 theories.—An N ¼ 2

description: Let us consider the following class of 3D
N ¼ 2 Abelian Chern-Simons matter theories, which we
call T r:

Uð1ÞrKr
þΦa¼1;���r; ð2Þ

with the superpotential deformation,

W ¼ Vm1
þ � � � þ Vmr−1

: ð3Þ

The charge of the ath chiral multiplet Φa under the bth
Uð1Þ gauge symmetry is δab. There are mixed Chern-
Simons interactions among the Abelian gauge fields given
by the following level matrix [6]:

Kr ¼ 2

0
BBBBBBBBBB@

1 1 1 � � � 1 1

1 2 2 � � � 2 2

1 2 3 � � � 3 3

..

. ..
. ..

. . .
. ..

. ..
.

1 2 3 � � � r − 1 r − 1

1 2 3 � � � r − 1 r

1
CCCCCCCCCCA
; ð4Þ

which coincides with 2CðTrÞ−1, where CðTrÞ is the Cartan
matrix of the tadpole graph, obtained by folding the Cartan
matrix of Ar in half. The Vmi

’s are 1=2 BPS, gauge-
invariant, bare monopole operators with fluxes [8]

m1 ¼ ð2;−1; 0;…0Þ;
m2 ¼ ð−1; 2;−1; 0;…0Þ;

..

.

mr−1 ¼ ð0;…;−1; 2;−1Þ: ð5Þ
After the monopole deformation, the 3D N ¼ 2 gauge

theory has an unbroken U(1) flavor symmetry which we
denote by Uð1ÞA. The charge A of this flavor symmetry is

A ¼
Xr

a¼1

aMa; ð6Þ

where Ma is the topological charge of ath U(1) gauge
symmetry. The theory also has a Uð1ÞR R symmetry which
can be mixed with the Uð1ÞA flavor symmetry. We denote
the R charge at general mixing parameter ν∈R by Rν, i.e.,

Rν ¼ R0 þ νA: ð7Þ

We choose the reference R charge, R0, to be the super-
conformal R charge, which can be determined by F
maximization [9].
Supersymmetry enhancement: Here we claim that the

N ¼ 2 gauge theory T r flows to anN ¼ 4 rank-0 SCFT in
the IR with an accidental supersymmetry (SUSY) enhance-
ment. For the r ¼ 1 case, SUSYenhancement was claimed
in [2] by demonstrating several pieces of nontrivial evi-
dence. We give similar evidence for general r. Under the
SUSYenhancement, themanifestUð1ÞR × Uð1ÞA symmetry
is expected to become an SOð4ÞR ≃ SUð2ÞC × SUð2ÞH R
symmetry with the following embedding

Rν ¼ ðJC3 þ JH3 Þ þ νðJC3 − JH3 Þ: ð8Þ

Here JC=H3 are the Cartan generators of the SUð2ÞC=H R
symmetries, whose charges take half-integral values.
To see the SUSY enhancement, we compute the super-

conformal index I sciðq; η; νÞ, which is defined as

I sciðq; η; νÞ ≔ TrHradðS2Þð−1ÞRνqðRν=2Þþj3ηA: ð9Þ

Here HradðS2Þ is the Hilbert space of radially quantized
theory on S2 and j3 ∈ ðZ=2Þ is the spin. The index can be
computed via supersymmetric localization [10,11] and
we find

I sciðq; ην ¼ 0Þ ¼ 1 − q −
�
ηþ 1

η

�
q3=2 þOðq2Þ: ð10Þ

Only q
1
2
Z≥0 terms appear in the index, which is the first sign

of an enhancement. Further, the terms −
�
ηþ ð1=ηÞ�q3=2

can only come either from extra SUSY-current multiplets or
chiral primary multiplets with superconformal R charge 3
[12]. Performing a semiclassical analysis of HradðS2Þ, one
can verify that there are two 1=4 BPS dressed monopole
operators which have R0 ¼ j3 ¼ 1 and A ¼ �1, which are
exactly the same as that of 1=4 BPS operators in extra-
SUSY multiplets. The monopole operators are

ψ�
rVm with m ¼

� ð1Þ; r ¼ 1

ð0r−2;−1; 1Þ; r > 1

and ϕ2
1ϕ

2
2…ϕ2

rVm¼ð−1;0r−1Þ:

Here ðϕa;ψaÞ are the (scalar, spinor) in the ath chiral
multiplet. On the other hand, we cannot find any chiral
primary operator with R0 ¼ 3 in the semiclassical analysis.
Thus, it is natural to conjecture that there exist extra SUSY-
current multiplets in the IR. Another supporting fact is that
there is an exact match between the central charges of
Uð1ÞR and Uð1ÞA which can be computed using localiza-
tion [13–16]. This is expected if the symmetry
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enhancement occurs, as they would be related by an
element of the Weyl group of SOð4ÞR. Finally, the T r
theory has a dual field theory description with manifest
N ¼ 3 SUSY [17]. Combining the manifest N ¼ 3
symmetry with the superconformal index computation,
one can argue that the symmetry is enhanced [18].
Two topological twists.—Being 3D N ¼ 4 theories,

each of the IR SCFTs admits two nilpotent topological
superchargesQA andQB, which we can use to perform two
topological twists. They are defined by replacing the
SUð2ÞE rotation group by the diagonally embedded SU(2)
subgroup of SUð2ÞE × SUð2ÞH or SUð2ÞE × SUð2ÞC,
which we call the topological A twist or B twist. We
denote the resulting topological field theories by TFTA and
TFTB, respectively.
The local operators of the two topologically twisted

theories are the Coulomb branch chiral rings and the Higgs
branch chiral rings, respectively. At the level of the
superconformal index, the topological A twist is realized
by taking the limit ν → −1 with η ¼ 1, while the topo-
logical B twist is realized by taking the limit ν → 1 with
η ¼ 1 [19,20]. For the class of theories discussed in the
previous section, we find

I sciðq; η ¼ 1; ν ¼ �1Þ ¼ 1; ð11Þ

which agrees with the expectation that the Higgs and
Coulomb branches are trivial for this class of theories.
In this Letter, we focus on the properties of the A-twisted

theories and leave a general analysis for the B-twisted
theories in an upcoming paper by one of the authors [21].
Fermionic sum representations of the minimal model

characters.—The partition function of a RCFT on a torus
with complex structure τ can be written as a combination of
a finite number of holomorphic and antiholomorphic
functions in q ¼ e2πiτ,

Zðτ; τ̄Þ ¼
X
α;ᾱ

Mα;ᾱχαðqÞχ̄ᾱðq̄Þ; ð12Þ

where the holomorphic functions χαðqÞ are called the
characters of the representations Vα. The invariance of
the partition function under the modular transformation,

τ →
aτ þ b
cτ þ d

for

�
a b

c d

�
∈ SLð2;ZÞ; ð13Þ

implies that the RCFT characters transform as vector-
valued modular functions.
The motivation for the UV description T r in the previous

section comes from the following expressions for the
characters of nonunitary Virasoro minimal models
Mð2; 2rþ 3Þ [22–25]:

χMð2;2rþ3Þ
α¼0;…;r ðqÞ ¼

X
m∈ ðZ≥0Þr

q
1
2
mtKrmþ

P
r
a¼1

ama−ðQαÞtmþhα− c
24

ðqÞm1
…ðqÞmr

;

ð14Þ

where the r × rmatrixKr coincides with the Chern-Simons
level matrix (4) and Qα are rank-r vectors whose compo-
nents are

ðQαÞa ¼
�
0; α ¼ 0

1
2
ðKrÞαa; 1 ≤ α ≤ r

; ð15Þ

We also define

hα ¼
αðα − 2r − 1Þ

4rþ 6
and c ¼ −

2rð6rþ 5Þ
2rþ 3

; ð16Þ

which are the conformal dimensions and the central charge.
Finally, the denominator is a product of q-Pochhammer
symbols, defined by

ðqÞm ¼
Ym
i¼1

ð1 − qiÞ: ð17Þ

The simplest nontrivial example is the Virasoro minimal
model Mð2; 5Þ, whose characters are

χ0ðqÞ ¼
X∞
m¼0

qm
2þmþ11

60

ðqÞm
; χ1ðqÞ ¼

X∞
m¼0

qm
2− 1

60

ðqÞm
: ð18Þ

These characters transform as a vector-valued modular
function under the SLð2;ZÞ transformation (13).

χαð−1=τÞ¼
X
β

SαβχβðτÞ; χαðτþ1Þ¼
X
β

TαβχβðτÞ; ð19Þ

where S and T are the generators of SLð2;ZÞ that satisfy
the relation S2 ¼ ðSTÞ3 ¼ I [26]. They can be explicitly
written as

Sαβ ¼
2ð−1Þrþαþβffiffiffiffiffiffiffiffiffiffiffiffiffi

2rþ 3
p sin

�
2πðαþ 1Þðβ þ 1Þ

2rþ 3

�
;

Tαβ ¼ δα;β exp

�
2πi

�
hα −

c
24

��
: ð20Þ

We note that these are the simplest examples of char-
acters that can be written in a so-called fermionic sum
representation,

χðA;B;CÞðqÞ ¼
X

m¼ðm1;…;mrÞ∈ ðZ≥0Þr

q
1
2
mtAmþBtmþC

ðqÞm1
� � � ðqÞmr

; ð21Þ

where A is a r × r positive definite symmetric matrix, B is a
r-dimensional vector and C is a real number. There exists a
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large class of CFTs whose characters can be written in a
fermionic sum representation or its generalizations. In
particular, they have been extensively studied with regard
to the characters of Virasoro minimal models [22–25]
and the characters of a certain class of logarithmic
CFTs [27,28].
Half-indices.—The half-index or the supersymmetric

partition function on D2 × qS1, introduced in [29,30],
counts the boundary operators annihilated by the super-
charges that are preserved by a chosen supersymmetric
boundary condition on ∂ðD2 × qS1Þ ≃ T2. More precisely,
it computes

Ihalf ¼ TrT2ð−1ÞRνq
Rν
2
þj3ηA; ð22Þ

where the trace counts the local operators on the boundary
torus. If the boundary condition is compatible with the
topological supercharge QA (or QB) in the IR, the half-
indices in the limit ν → −1 (or ν → 1) with η ¼ 1 calculate
the characters of the boundary algebra for each topologi-
cally twisted theory.
The UV description of the T r theory (2) is designed in a

way that its half-index reproduces the characters of the
Virasoro minimal model Mð2; 2rþ 3Þ in a specific limit.
Indeed, if we impose the Dirichlet boundary conditions for
all the N ¼ 2 U(1) vector multiplets and the deformed
Dirichlet boundary conditions for all the chiral multiplets in
the T r theory [31], the half-index reads [32,33]

Ihalfðq; η; νÞ ¼
X
m∈Zr

q
1
2
mtKrm

ðqÞr∞
½ð−q1=2Þν−1η�

P
r
a¼1

ama

×
Yr
a¼1

ðq1−ma ; qÞ∞; ð23Þ

where we define ðx; qÞ∞ ≔
Q∞

n¼0ð1 − qnxÞ. We observe
that this expression in the A-twist limit η ¼ 1, ν ¼ −1
coincides with the vacuum character of the Virasoro
minimal model Mð2; 2rþ 3Þ up to an overall factor [34],

χMð2;2rþ3Þ
α¼0 ðqÞ ¼ q−

c
24Ihalfðq; 1;−1Þ: ð24Þ

The characters of other modules Mα can be obtained by
inserting loop operators. We consider the Wilson loops
Lα¼1;…;r, whose charge under the ath U(1) gauge group
factor is given by the formula ðQαÞa in (15). The half-index
IA½Lα� in the presence of Lα reproduces the rest of the
characters of Mð2; 2rþ 3Þ [36]

χMð2;2rþ3Þ
α ðqÞ ¼ qhα−

c
24IA½Lα�ðqÞ; ð25Þ

for all α ¼ 1;…; r. The choice of these particular sets of
loop operators will be justified in the following section.

In order to claim that these expressions are the characters
of the boundary algebra of TFTA it is crucial to ensure that
the boundary conditions are compatible with the topologi-
cal supercharge QA in the IR theory. In general this is a
nontrivial task for theories which only have N ¼ 2
descriptions. See Ref. [21] for the discussion of this issue
in the context of deformable boundary conditions in the
holomorphic-topologically twisted theory.
Partition Functions on Seifert manifolds.—The super-

symmetric partition functions of N ¼ 2 theories on a
Seifert three-manifold M3 are completely determined by
the twisted effective superpotential W and the dilaton
potential Ω [7,15,37,38]. For the T r theory, we have

WrðuÞ ¼
Xr

a;b¼1

1

2
ðKrÞabuaub þ

Xr
a¼1

ζaua

þ 1

ð2πiÞ2
Xr
a¼1

Li2ðe2πiuaÞ;

ΩrðuÞ ¼
Xr

a¼1

1

2πi
logð1 − e2πiuaÞ þ ðν − 1Þaua; ð26Þ

where ζ is the real mass parameter for Uð1ÞA symmetry. If
M3 is a degree-p circle bundle over a genus g Riemann
surface, the partition functions can be written as

Zg;p½T r� ¼
X

fPðu�Þ¼1g
Hg−1ðu�ÞFpðu�Þ; ð27Þ

where

HðuÞ ¼ exp½2πiΩr�det
ab
∂a∂bWr;

F ðuÞ ¼ exp½2πiðWr − ua∂aW − ζ∂ζWÞ� ð28Þ

with xa ¼ e2πiua [39]. These functions are then evaluated
on the solutions to the so-called Bethe equations:

PðuÞ ¼ exp

�
2πi

∂WrðuÞ
∂ua

	
¼ 1; for a ¼ 1;…; r; ð29Þ

which reads, for T r,

1 − xa ¼ ηa
Y
b¼1

xðKrÞab
b ; η ¼ e2πiζ: ð30Þ

This system of equations has exactly rþ 1 solutions, which
we denote by fu�α¼0;…;rg.
In the twisting limit ðν; ηÞ ¼ ð−1; 1Þ, the supersymmet-

ric partition function (27) can be written in terms of the
modular data [40]:

Zg;p½T r�jðν;ηÞ¼ð−1;1Þ ¼
X
α

S2−2g0α T−p
αα ; ð31Þ
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where α labels modules of boundary algebra and ðS; TÞ are
the modular matrices that transform the characters as in
(20). By comparing (27) and (31), we can extract the
modular data, more precisely the set fS20α; T−1

ααg, by
identifying it with fHðu�αÞ−1;F ðu�αÞg [41].
The full modular data and the precise map between the

Bethe vacua u�α and the modules Mα (or, equivalently,
the loop operators Lα) can be constructed by requiring the
relation [42,43]

Lαðu�0Þ ¼ Sα0=S00 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðu�0Þ=Hðu�αÞ

q
; ð32Þ

where Lαðu�βÞ is the loop operator Lα evaluated on the
Bethe vacuum u�β. For this class of theories, we consider
Wilson loops L with gauge charges ðQ1;…; QrÞ, which
contributes

Lðu�βÞ ¼
Y

ðx−Qa
a Þju→u�β

: ð33Þ

Then the following identity

Sαβ ¼ Lαðu�βÞS0β with S0β ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðu�βÞ

q
; ð34Þ

together with the SLð2;ZÞ relations and the non-negativity
of the fusion rule coefficients, determines the Smatrix up to
an overall sign and the T matrix up to an overall phase
factor of the form expð2πiZ=3Þ. This procedure determines
the precise set of lines Lα as stated in the previous section.
The S and T matrices computed in this way agree with the
modular matrices of the Virasoro minimal model
Mð2; 2rþ 3Þ, as given in (20) [44].
Discussion.—In this Letter, we constructed a class of

rank-0 SCFTs inspired by the characters of nonunitary
minimal models. By applying the correspondence in the
reverse direction, a novel class of nonunitary RCFTs is
introduced [47], which correspond to well-studied exam-
ples of rank-0 SCFTs. In this way, we expect the corre-
spondence to help explore uncharted landscapes of 2D
RCFTs as well as 3D SCFTs.
The fermionic sum formulas for characters are known for

a much larger class of RCFTs. In particular, Nahm [24] and
Zagier [48] classified modular functions of the form of (21)
for small values of r, which can therefore be candidates for
characters of an RCFT. In an upcoming work [5], we will
extensively study the classification of the rank-0 theories
that give rise to these characters and discuss the relation to
the work of Zagier [48].
One of the important questions is whether one can

explicitly construct the boundary rational vertex algebras
for the TFTs discussed in this Letter. As a first step toward
this goal, in an upcoming paper [21], the boundary algebras
for the B-twisted theories will be studied via the holomor-
phic-topological twist of the UV gauge theories.
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