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We present a framework to compute amplitudes for the gravitational analog of the Raman process, a
quasielastic scattering of waves off compact objects, in worldline effective field theory. As an example, we
calculate third post-Minkowskian order [OðG3Þ], or two-loop, phase shifts for the scattering of a massless
scalar field including all tidal effects and dissipation. Our calculation unveils two sources of the classical
renormalization-group flow of dynamical Love numbers: a universal running independent of the nature of
the compact object, and a running self-induced by tides. Restricting to the black hole case, we find that our
effective field theory phase shifts agree exactly with those from general relativity, provided that the relevant
static Love numbers are set to zero. In addition, we carry out a complete matching of the leading scalar
dynamical Love number required to renormalize a universal short scale divergence in the S wave. Our
results pave the way for systematic calculations of gravitational Raman scattering at higher post-
Minkowskian orders.
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Introduction.—Recent advances in gravitational wave
astronomy have spurred the development of efficient tech-
niques for precision calculations of binary dynamics. One
such technique is worldline effective field theory (EFT) for
compact binaries [1–6], wherein a compact object (a neutron
star or black hole) is represented at large distances as a point
particle, and which provides a systematic program for the
perturbative computation of inspiral waveforms. More gen-
erally, the EFT paradigm enables an accurate description of a
variety of physical effects: tides and dissipation [2,7,8], spin
[4,9,10], Hawking radiation [11,12], self-force [13–16], etc.
In this Letter, we use the EFT framework to calculate

mildly inelastic gravitational scattering of massless fields
off compact objects. This is a direct gravitational analog of
Raman scattering of photons that is commonly used to
elucidate the internal structure of molecules. Here, we
explore its gravitational counterpart to probe the nature of
compact relativistic objects.
In the worldline EFT the finite-size structure of compact

objects is captured by multipole moments on the particle’s
worldline nonminimally coupled to the gravitational field
[1,2]. The associated Wilson coefficients provide a gauge-
invariant definition of the tidal deformability of the objects,

also known as Love numbers [1,17–24]. These are free
parameters in the EFT that have to be either measured from
data or extracted from a matching calculation to a micro-
scopic theory, if the latter is available. Once the values of
matching coefficients are determined they can be used to
make further predictions. The universality and consistency
of the EFT thus guarantee its predictability.
Scattering amplitudes are particularly suitable for match-

ing calculations: they are simple, manifestly gauge-invariant,
and field-redefinition independent objects [1,3,25–29]. In
addition, in the post-Minkowskian (PM) regime (formal
perturbation theory in Newton’s constant G) they can be
directly compared to known amplitudes in full classical
general relativity (GR). These matching calculations also
provide new insights into the general structure of gravita-
tional scattering amplitudes by confronting them with exact
nonperturbative results from black hole solutions. In this
vein, partial results on the calibration of Love numbers from
scattering amplitudes exploiting the so-called near-far fac-
torization were given in [28,29]. A numerical estimation of
tidal effects from scattering of a pointlike particle with scalar
charge by black holes at 4PM order was carried out in [30].
Finally, the scattering of photons and gravitons off compact
objects is, in principle, an observable phenomenon relevant
in astrophysics and cosmology; see, e.g., [31–34].
We present a general framework for systematic computa-

tions of EFTamplitudes for gravitational Raman scattering at
high PM orders. Our approach makes use of the background
field method and advanced multiloop integration techniques.
We demonstrate its power by explicitly calculating the
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amplitudes for spin-0 fields scattering off a nonspinning
compact object through 3PM order,OðG3Þ, where finite-size
effects first appear. We find that the amplitude exhibits
ultraviolet (UV) divergences, whose renormalization requires
contact worldline operators. They are scalar analogs of the
“dynamical Love number,” a coefficient that sets the strength
of the multipole moment tidally induced by an external time-
dependent field. We show that dynamical Love numbers
undergo renormalization-group running due to two different
effects. The first source of renormalization is the gravitational
“dressing” of the point particle action.As such, this running is
universal for any compact object. The second source of the
running is the gravitational “dressing” of the static Love
number.We call such running “self-induced,” as its strength is
set by the amplitude of lower order tidal Wilson coefficients
(see also [29,35–37] for similar discussions).
Assuming that a compact object is a black hole, and

using results from black hole perturbation theory (BHPT)
[28,38–46], the EFT scattering amplitudes allow for a
complete order-by-order matching of tidal effects, includ-
ing dissipation. Matching the 3PM scattering amplitudes to
BHPT, we prove explicitly that the leading static tidal
coefficient is zero and does not run, in agreement with
previous off-shell calculations [22,23,47]. This also implies
the vanishing of the self-induced tidal coefficients. In
addition, we completely match the leading spin-0 dynami-
cal Love number. Finally, we compute the running of the
scalar dissipation operators, thus extending the previous
calculations from [7,26,29,48]. Our results set the stage for
forthcoming spin-2 calculations.
Worldline EFT and power counting.—The first ingre-

dient of the worldline EFT is the “bulk” action for the
massless scalar and gravitational fields:

Sbulk ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
ð∂μϕÞ2

�
: ð1Þ

A compact object of mass m is described by the worldline
action

S ¼ −m
Z

dτ þ Sfs; ð2Þ

where τ is proper time. The first term is the relativistic
point-particle action and Sfs is an action encoding finite-
size effects. As mentioned in the introduction, in the
language of effective field theory the latter appear as
higher-dimension operators on the worldline and couplings
of the fields to dynamical multipole moments describing
the internal degrees of freedom of the compact object, QL.
For scalars, this action reads [2,7]

Sfs ¼
X
l

Z
dτQL∂Lϕþ Sctfs; ð3Þ

where in the EFT the multipoles, QL, are composite
operators, L is a multi-index denoting the symmetric
traceless combination l indices, and ∂ ¼ ðgμν þ uμuνÞ∂μ,
with uρ the object’s 4-velocity, is the spatial derivative in
the rest frame of the compact object. Sctfs is the counterterm
action discussed shortly. The dynamical dipole couplingR
dτQ · ∂ϕ is analogous to the familiar dipolar electromag-

netic interaction. In the EFT we are ignorant about the
microscopic nature of the multipoles. Instead, we are
interested in their correlation functions, such as the
Fourier transformed time-ordered two-point function

Z
dte−iωthTQL1

ðtÞQL2
ð0Þi ¼ −iδL1L2

FlðωÞ; ð4Þ

which at low frequencies takes the form

FlðωÞ ¼ Cl;ω0 þ iCl;ωjωj þ Cl;ω2ω2 þ � � � : ð5Þ

The corresponding Wilson coefficients Cl;ωn are collec-
tively known as Love numbers. The static Love numbers
(n ¼ 0) describe the response of the compact object to
time-independent fields (static tides) with different multi-
polar profiles. These have been extensively studied for
neutron star and black holes [18,19,49,50], which yielded
a surprising result that they vanish for black holes in
D ¼ 1þ 3 [20–24,51] (symmetry explanations were pro-
posed in [47,52–54]). The coefficients Cl;ω2n (n > 0) are
called “dynamical Love numbers,” as they describe the
response to time-dependent fields. We refer to Cl;ω2nþ1 as
dissipation numbers.
Real parts of Fl are analytic functions that describe

conservative finite-size effects. As such, they can be fully
absorbed into the local worldline counterterm action,

Sctfs ¼
X
l

1

2l!

Z
dτ

�
Cl;ω0ð∂LϕÞ2 þ Cl;ω2ð∂Lϕ̇Þ2 þ � � �

�

¼ 1

2

Z
dτ

�
C1;ω0ð∂ϕÞ2 þ C0;ω2 ϕ̇2 þ C1;ω2ð∂ϕ̇Þ2 þ � � �

�
;

ð6Þ

where ϕ̇ ¼ ∂τϕ ¼ ðuμ∂μÞϕ. Here, in the first line we show
operators corresponding to the static and leading dynamical
Love numbers, and in the second we show only the leading
order operators relevant for our calculation below. Note that
the scalar monopole operator

R
dτϕ2 is forbidden by the

shift symmetry ϕ → ϕþ v of the massless scalar, i.e.,
C0;ω0 ¼ 0.
In contrast, ImFl describes the dissipative part of the

response and cannot be written in terms of local worldline
operators. This will capture inelastic effects, e.g., absorp-
tion or tidal heating. Note that formally Fl are correlators
of renormalized multipole moments that receive scale
dependence through gravitational dressing [55,56].
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Wilsonian naturalness dictates that Cl;ωn ∼ R2lþ1þn,
where R is the size of the compact object, R ¼ AGm,
with A ¼ 2 for black holes, and A ∼ 10 for neutron stars
[49], which makes it natural to consider R as a second
expansion parameter independent of Gm.
EFT scattering amplitudes.—The effective action (1)–(2)

can be used to calculate the quantum amplitudes for scalars
scattering off a compact object. We compute the full EFT
amplitudes following the approach of [16,57], i.e., expand-
ing the effective action around a background solution given
by theworldline moving in a straight trajectory, xμðτÞ ¼ uμτ,
and the metric given by the large-distance expansion of the
Schwarzschild metric in isotropic coordinates,

ḡαβ ¼ ηαβ þ uαuβ

�
−

μ

rD−3 þ
1

2

μ2

r2ðD−3Þ

�

þ ðηαβ þ uαuβÞ
�

1

D − 3

μ

rD−3 −
D − 7

8ðD − 3Þ2
μ2

r2ðD−3Þ

�

þ � � � ; ð7Þ

where μ ¼ ½16πGm=ðD − 2ÞΩD−2�, andΩD−2 is the volume
of the (D − 2)-dimensional sphere. Famously, this expansion
resums the perturbative solution to Einstein’s equation with a
point source [58], which corresponds to an infinite number
of worldline Feynman diagrams. The recoil of the worldline
is subleading in the low-frequency limit, and the metric
fluctuations are not relevant for the scalar field amplitude, so
we will also ignore them henceforth.
The full scalar amplitude is simply given by iterative

scattering against the background plus the scattering off the
dynamical multipole moments. The corresponding back-
ground-field Feynman diagrams are

ð8Þ

The first background-field vertex Feynman rule is given in
momentum space by the Fourier transform of the scalar
action

ð9Þ

with momentum transfer q ¼ k1 þ k2. The other vertex is
just the correlator hQL1

QL2
i that captures the dynamical

multipolar tidal response

ð10Þ

They are connected by ordinary flat-space propagators

ð11Þ

The background-field diagrams can be recast in terms of
ordinary flat-space Feynman integrals [16,57]. In our case,
at 3PM, all such integrals belong to the family

Ga1a2a3a4a5a6a7 ¼
Z
l1l2

δðu · l1Þδðu · l2ÞD−a7
7

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5 Da6

6

; ð12Þ

with a basis of propagators and invariant products

D1 ¼ l2
1; D2 ¼ l2

2; D3 ¼ ðl1 þ k1Þ2;
D4 ¼ ðl2 þ k2Þ2; D5 ¼ ðl1 þ l2 þ k1 þ k2Þ2;
D6 ¼ ðl1 þ k2Þ2; D7 ¼ ðl2 þ k1Þ2: ð13Þ

We will compute all integrals in dimensional regularization
with D ¼ 4 − 2ϵ. Using integration-by-parts identities [59]
we can reduce any integral in such family to a basis of
master integrals given by

fG0011000; G0110100; G1001100; G1100100;

G1101100; G1110100; G1111100; G2111100g; ð14Þ

where we use the notation in Eq. (12). Their dependence on
the frequency ω is fixed by the dimensional analysis, so
they are only nontrivial functions of the scattering angle,
which we parametrize by x ¼ sinðθ=2Þ. We compute the
dependence on x by using the method of differential
equations for Feynman integrals [60–62]. Indeed, it is
not difficult to find a basis f⃗ ¼ ffi¼1;…;8g that satisfies
canonical differential equations [63,64]

df⃗
dx

¼ ϵAðxÞf⃗ ¼ ϵ

�
A0

x
þ A1

x2 − 1

�
f⃗ ð15Þ

with matrices Ai independent of x and ϵ. The solution easily
obtained order by order in ϵ (see, e.g., [64])

f⃗ðx; ϵÞ ¼ f⃗ð0; ϵÞ þ ϵ

Z
x

0

dx0Aðx0Þf⃗ð0; ϵÞ þ � � � : ð16Þ

The boundary conditions are fixed by requiring the absence
of singularities in the backward limit x ¼ �1 and expand-
ing around the forward limit x ¼ 0 [65].
Results.—Since the worldline operators in (7) furnish

irreducible representations of the rotation group, it is
natural to consider scattering amplitudes in the partial
wave basis

iMðω; θÞ ¼ 2π

ω

X∞
l¼0

ð2lþ 1Þðηle2iδl − 1ÞPlðcos θÞ; ð17Þ
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where θ is the scattering angle and Pl are Legendre
polynomials; see Supplemental Material [66] for a deriva-
tion of our partial wave expansion. The partial wave
coefficients are parametrized in terms of real scattering
phase shifts δl and inelasticity parameters ηl (equivalently,
Δηl ≡ 1 − ηl). In our basis, an operator with a multipole
number l contributes only to the lth wave.
Using λ≡ 2Gmω, our final 3PM EFT phase shift for the

l wave can be written as

δl

����
EFT

¼ −
λ

2ϵIR
þ λ

2
ln

�
4ω2

μ̄2IR

�
þ
X3
n¼1

νlnλ
n þ δG

3

l ;

Δηl

����
EFT

¼ l!ω2lþ1ImFlðωÞ
2πð2lþ 1Þ!!

�
1þ πλþ λ2ηG

2

l

�
; ð18Þ

where νln are Oð1Þ numerical constants, e.g.,

νl2 ¼ −11þ 15lð1þ lÞ
4ð−1þ 2lÞð1þ 2lÞð3þ 2lÞ π; ð19Þ

and the rest are given in Supplemental Material. μ̄IR is the
IR matching scale. δG

3

l and ηG
2

l contain UV divergences.
Elastic terms δG

3

l are nonzero only for l ¼ 0, 1:

δG
3

0

����
EFT

¼ λ3
�

1

4ϵUV
þ 49

24
−
1

2
ln
�
4ω2

μ̄2

��
þ C0;ω2ω3

4π
;

δG
3

1

����
EFT

¼ C1;ω0ω3

12π

�
1þ πλþ λ2ηG

2

1

�
þ C1;ω2ω5

12π
; ð20Þ

where μ̄ is the matching scale in the minimal subtraction
(MS) scheme. The expression for ηG

3

l is given in the
Supplemental Material. For l ¼ 0, 1 we have

ηG
2

0

����
EFT

¼ 67

12
−
11

6

�
−

1

2ϵUV
þ ln

�
4ω2

μ̄2

��
þ π2

3

ηG
2

1

����
EFT

¼ 413

100
−
19

30

�
−

1

2ϵUV
þ ln

�
4ω2

μ̄2

��
þ π2

3
: ð21Þ

The IR divergence and the μ̄IR dependence in the first two
terms of Eq. (18) are unobservable [70,71] because they
appear multiplicatively in the S matrix and hence do no
affect the physical cross section. The third term is a sum of
the finite Feynman diagrams. The last term in the first line
of Eq. (18) contains the UV singularity in the single
insertion of the background metric at OðG3Þ and the
relevant tree-level worldline counterterms (Love numbers),
displayed in Eq. (20). Since there are no divergences in the
P wave at OðG3Þ, C1;ω0 is just a constant. In contrast,
C0;ω2ðμ̄Þ is a running coupling, which we use to renorm-
alize the S-wave divergence in the MS scheme. Its β
function is given by

dC0;ω2ðμ̄Þ
d ln μ̄

¼ −4πð2GmÞ3: ð22Þ

It is convenient now to absorb all local counterterms into
the real part of internal multipole moments defined in
Eq. (3). Then we can write down a unified expression for
the two-loop beta function of all scalar tidal operators:

dFlðω; μ̄Þ
d ln μ̄

¼ −ð2GmωÞ2
�
4νl2
π

Flðω; μ̄Þ þ 8πGmδ½0l�

�
;

ð23Þ

where δ½ll0� is the Kronecker delta. The first term in the rhs
above describes the running of self-induced tidal effects,
both conservative and dissipative. The EFT elegantly
explains this homogeneity: both effects stem from the
correlators hQQi that pick up the same running from
gravitational two-loop diagrams attached to them.
Interestingly, the two-loop beta function is proportional
to the one-loop (2PM) phase shift νl2 . This can be explained
by the fact that unitarity fixes the coefficient of the lnω2 in
the dressed correlator in terms of the lower-PM amplitude.
In contrast, the rightmost term above is a universal
conservative contribution that arises from the PM expan-
sion. The EFT dictates that this part does not depend on the
nature of the compact object.
Matching to black holes.—Let us compare our EFT

phase shift (18) with the analytic expression known from
BHPT in GR [38–44,46]. Truncating this expression at
3PM and introducing the Schwarzschild radius rs ¼ 2Gm
as the only scale of static black holes, we find

δl

����
GR

¼ ðrsωÞ ln ð2ωrsÞ þ
X3
n¼1

νlnðrsωÞn þ δG
3

l ð24Þ

where δG
3

l

����
GR

¼ 0 for l > 0 and

δG
3

0

����
GR

¼ ðrsωÞ3
�
7

12
− γE − lnð2rsωÞ

�
; ð25Þ

while the 3PM inelasticity parameters are given by

Δηl

����
GR

¼ 22lþ1ðl!Þ4ðrsωÞ2lþ2

½ð2lÞ!ð2lþ 1Þ!�2ð2lþ 1Þ
�
1þ πλþ λ2ηG

2

l

�
;

ð26Þ

with
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ηG
2

0

����
GR

¼ −
11

6
ln

�
4r2sω2e2γE

�
þ 2π2

3
þ 191

36
;

ηG
2

1

����
GR

¼ −
19

30
ln

�
4r2sω2e2γE

�
þ 2π2

3
þ 6853

900
; ð27Þ

and the rest are given in Supplemental Material.
As a first check of our calculation, we verify that infrared

divergences in the EFT match those in the full theory by
choosing μ̄IR ¼ 1=rs. A second important observation is
that the coefficients in front of the UV logs in the EFT
expression (20) match those in GR (25), (27), as expected
by consistency of the EFT. Matching the P-wave (l ¼ 1)
phase shift we obtain the vanishing of the scalar dipole
static Love number, C1;ω0 ¼ 0, consistent with previous
results [22–24,28]. This is the first rigorous on-shell proof
of the vanishing of Love numbers. The contribution of the
dipolar dynamical Love number C1;ω2 in Eq. (20) shifts to
5PM for black holes, which is beyond the scope of
our work.
Matching the S wave, we extract the monopole dynami-

cal Love number

C0;ω2ðμ̄ÞMS ¼ −4πr3s
�

1

4ϵUV
þ lnðμ̄rsÞ þ

35

24
þ γE

�
ð28Þ

obtained in the conventional dimensional regularization
þMS scheme. This is one of our main results. Note it is
broadly consistent with the numerical estimate from [30].
Finally, matching ηl we get the renormalized ImFl, e.g.,

for the S wave we have

ImF0ðω; μ̄ÞMS ¼ 4πr2s jωj
�
1þ ðrsωÞ2

�
π2

3
−

5

18

−
11

3

�
ln ðμ̄rsÞ þ γE

��	
: ð29Þ

Concluding, we note that comparison with GR demon-
strates the utility of the EFT. Although the full GR phase
shift is known, the physical interpretation of individual
terms in it, especially logarithms, is difficult. In contrast,
the EFT clearly classifies all logs into IR and UVones, and
also distinguishes universal and self-induced tidal effects.
Finally, the EFT nicely explains the apparent conspiracy
between coefficients in front of dissipative logs and
conservative phase shifts at lower loop orders.
Generalizations.—Our method can be used to study tides

in higher spacetime dimensionD. For generalD, it is trivial
to match finite-size couplings because tidal effects do not
scale as integer powers ofG [22,23,28,29]. UV divergences
and nontrivial matching conditions arise if 2l=ðD − 3Þ is
integer. In particular, inD ¼ 5we find divergences for both
S and P waves,

δl

����
D¼5

EFT
⊃ −

ðGmω2Þ2
72π

ð64δ½l0� þ δ½l1�Þ ln
�
ω

μ̄

�
: ð30Þ

Their renormalization requires the following universal
running of the worldline couplings:

dC1;ω0

d ln μ̄
¼ −

8

9
ðGmÞ2; dC0;ω2

d ln μ̄
¼ −

128

9
ðGmÞ2: ð31Þ

The beta function for C1;ω0 matches the known results from
GR [22,23,28]. The running part of the dynamical love
number C0;ω2 is obtained for the first time. Since full BHPT
results are not readily available in the literature for D ¼ 5,
we leave a complete matching for future work.
Conclusions.—We have presented a new systematic

framework to match tidal responses of compact objects
from probability amplitudes of massless waves to scatter
off these objects. Our method is free of gauge dependence
and field-redefinition ambiguities that plague the standard
off-shell matching techniques commonly used to extract
tidal effects (Love numbers). We illustrated the power of
our approach by calculating a full 3PM amplitude for a
scalar field to quasielastically scatter off a generic compact
object. Our technique leads to rich implications for black
holes, for which analytic GR results are available for
comparison. In particular, we clarified the IR and UV
origin of different terms in the GR expressions. Overall, our
findings presented here give new insights into the form of
gravitational scattering amplitudes, and serve as a prototype
for the upcoming spin-2 Raman scattering calculations.
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