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The cosmic large-scale structure (LSS) provides a unique testing ground for connecting fundamental
physics to astronomical observations. Modeling the LSS requires numerical N-body simulations or
perturbative techniques that both come with distinct shortcomings. Here we present the first unified
numerical approach, enabled by new time integration and discreteness reduction schemes, and demonstrate
its convergence at the field level. In particular, we show that our simulations (i) can be initialized directly at
time zero, and (ii) can be made to agree with high-order Lagrangian perturbation theory in the fluid limit.
This enables fast, self-consistent, and UV-complete forward modeling of LSS observables.
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Introduction.—The gravitational evolution of collision-
less matter is governed by the cosmological Vlasov-
Poisson system (VP) [1–4], which describes how the
phase-space distribution f ¼ fðt; x; pÞ of a continuous
medium evolves,

df
dt

¼ ∂f
∂t

þ p
a2

· ∇xf − ∇xφ · ∇pf ¼ 0; ð1Þ

where the gravitational potential is subject to Poisson’s
equation ∇2

xφ ¼ 3=ð2aÞH2
0Ωmδ. Here, ðx; pÞ is the canoni-

cal position-momentum pair, a is the scale factor, H0 is
the Hubble constant, Ωm is today’s density parameter, and
δ ¼ ρ=ρ̄ − 1 ¼ R

R3 fd3p − 1 is the density contrast.
At sufficiently early times and assuming that matter is

perfectly cold, the first two kinetic moments of Eq. (1) form
a closed set of fluid equations. This resulting Euler-Poisson
system is the starting point for perturbative approaches
to structure formation, which form the basic theoretical
class of methods for studying the large-scale structure of
the Universe: in Eulerian (standard) perturbation theory
(e.g., [2]), the density contrast δ is expanded in a Taylor
series, and a hierarchy of recursion relations for δ is
derived. However, as density fluctuations grow and
δ ∼ 1, this technique breaks down.
An alternative approach is given by Lagrangian pertur-

bation theory (LPT) [5–8], where instead a series ansatz
is used for the displacement field ΨðqÞ ¼ xðqÞ − q, i.e.,
the vector pointing from each Lagrangian position q to the
currently associated Eulerian position xðqÞ when moving
along the fluid characteristics. All-order recursive solu-
tions for Ψ are available [9–11], with the exact solution of
the VP system arising in the limit of infinite order [12].
Although converging significantly faster than Eulerian
perturbation theory, LPT eventually also breaks down,

namely, at the first shell crossing, i.e., when particle
trajectories cross for the first time. Then, the (Eulerian)
velocity field becomes multivalued, and the fluid descrip-
tion ceases to be valid as the Vlasov hierarchy can no
longer be truncated at first order. Analytical post-shell-
crossing approaches exist (e.g., [13–16]); however, they
do not (yet) extend into the strongly nonlinear regime and
are therefore not mature enough to be useful in practice.
An alternative to this is, e.g., “effective field theory of
large-scale structure” [17–19], which, however, relies on
matching free parameters to a UV-complete approach,
typically provided by simulations.
Hence, resolving the nonlinear late-time dynamics in a

UV-complete manner requires numericalmethods, with the
most prominent technique given by N-body simulations.
Here, the continuous phase-space distribution f is repre-
sented by a set of N discrete tracer particles with canonical
positions and momenta ðXi;PiÞ, for i ¼ 1;…; N. Requiring
dfðt;Xi;PiÞ=dt ¼ 0 leads to the Hamiltonian equations of
motion Ẋi ¼ Pi=a2 and Ṗi ¼ −∇xφjXi

. Note that if one had
access to the exact (continuous) potential φ, the particles
would move exactly according to the characteristics of
the underlying continuous system. However, since the true
density contrast δ in the Poisson equation can only be
approximated based on the positions of the N particles, an
estimate δN ≈ δ sources the Poisson equation, resulting
in an approximate potential φN ≈ φ. This is the crucial
approximation made byN-body simulations and, as wewill
see later, carefully designed techniques to improve the
match φN → φ are therefore key in suppressing discrete-
ness effects at early times and accessing the fluid limit with
N-body simulations.
Although perturbation theory and N-body simulations

are the theoretical and numerical pillars of modeling
cosmological structure formation, there are only very
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few studies on their agreement in the fluid limit at early times
when perturbation theory is still valid. Comparison studies in
this regime are hampered by the fact that spurious discrete-
ness effects become significant at early times as the N-body
system quickly deviates from the underlying continuous
dynamics [20,21]. Techniques for correcting at least the
linear discreteness error of the particle lattice exist [22],
but are not widely employed. Despite discreteness errors,
N-body simulations have traditionally been initialized using
first-order LPT (the Zel’dovich approximation [5]) or, more
recently, second-order LPT (2LPT) [6,23] at early times
(redshift z ¼ a−1 − 1≳ 100), to avoid truncation errors
arising from the residual between LPT and the true solution,
which ultimately bias the statistics of the simulated fields.
In Ref. [24], it was recently shown that a more favorable
trade-off between numerical discreteness errors and LPT
truncation errors is achieved by initializing cosmological
simulations at rather late times (e.g., z ≈ 15–40), by employ-
ing higher-order LPT, namely, 3LPT [25,26].
In this Letter, we bridge the gap between the analytical

and numerical descriptions of cosmic structure formation in
the fluid limit at early times. Specifically, we show for the
first time that by applying an array of discreteness reduction
techniques, together with a time integrator that has the
correct asymptotic behavior for a → 0, one obtains excel-
lent agreement between N-body dynamics and perturbation
theory. The choice of appropriate initial conditions (ICs)
and time variable allows us to initialize N-body simulations
at a ¼ 0, enabling a clean comparison between N-body
and LPT dynamics. Remarkably, a single N-body drift-
kick-drift (DKD) step from a ¼ 0 to a “typical” 3LPT
initialization time for cosmological simulations yields a
displacement field at ≈3LPT accuracy. This effectively
renders moot the LPT-based initialization of cosmological
N-body simulations and demonstrates that starting them
directly at a ¼ 0 is a promising alternative.
The structure of this Letter is as follows. First, we briefly

review the time integrator PowerFrog, which we recently
introduced in Ref. [27]. This integrator is asymptotically
consistent with 2LPT for a → 0 and a crucial ingredient for
achieving agreement between LPT and the N-body dynam-
ics. Next, we describe the discreteness suppression tech-
niques that enable us to achieve extremely low-noise results
in the fluid limit at early times. Then, we present and
discuss our results for a singleN-body simulation step from
z ¼ ∞ to z ¼ 18 (shortly before the time of the first shell
crossing). Finally, we comment on the present-day (i.e.,
z ¼ 0) statistics of N-body simulations initialized either
directly at z ¼ ∞ or with LPT.We find that while the power
spectra match to within 1% even without applying any
discreteness suppression techniques, these techniques are
necessary in order to obtain the correct cross-power
spectrum with z ¼ ∞-initialized simulations.
Π integrators.—The leapfrog integrator is ubiquitous

in cosmological simulations thanks to its simplicity,

symplecticity, and suitability for individual time steps for
different particles [28]. While it converges at second order
towards the correct solution as the time step decreases,
it does not exploit the fact that before shell-crossing the
displacement field Ψ can be expressed analytically in the
form of a series in the linear growth-time D of the ΛCDM
concordance model, namely the LPT series Ψðq; DÞ ¼P∞

n¼1 ψ
ðnÞðqÞDn. (We only consider growing-mode solu-

tions and neglect higher-order LPT corrections stemming
from the cosmological constant Λ; see Refs. [29,30].)
In Ref. [27], we introduced a class of integrators, which

we named Π integrators in view of the momentum variable
Π ¼ dX=dD with respect to which they are formulated.
Expressing the integrator in terms of momentum Π w.r.t.
growth-factor time enables the construction of second-
order accurate integration schemes which, when perform-
ing only few time steps, mimic LPT dynamics.
The only previously existing representative of this class is

the popular FastPM scheme by Ref. [31], which was con-
structed to match the dynamics of the Zel’dovich approxi-
mation on large scales. One of our new integrators, which we
named PowerFrog, further matches the 2LPT asymptote at
early times a → 0, which turns out to be essential for
initializing simulations at a ¼ 0, as we will see later.
As usual, we choose the ICs to be δðD ¼ 0Þ ¼ 0 and

ΠðD¼0Þ¼−∇qϕini, which implicitly selects the growing-
mode solution and ensures that the initial momentum is
curl-free [32–34]; see, e.g., Ref. [24] for details on how ϕini
can be obtained from a standard Boltzmann code employ-
ing a standard backscaling approach. Notice that the
canonical variables ðX;PÞ are incompatible with these
ICs: due to Liouville’s theorem for Hamiltonian mechanics,
the contraction of the positions to a single point in the
limit a → 0 leads to the divergence of the momenta. This is
not so, however, for the coordinates ðX;ΠÞ, which are
employed by Π integrators. In fact, the transformation from
ðX;PÞ ↦ ðX;ΠÞ is noncanonical (but rather “contact,”
see Refs. [35,36]), for which reason these new variables
are not subject to Liouville’s theorem, and it is easy to see
that the contact Hamiltonian for ðX;ΠÞ remains bounded
for a → 0 (subject to suitable ICs [37]).
Equipped with an integrator that works in terms of these

variables and, by construction, is consistent with the 2LPT
trajectory at early times, we will demonstrate that it is
possible to start cosmological simulations at a ¼ 0, with
the particles placed on an unperturbed homogeneous grid
[which approximates δðD ¼ 0Þ ¼ 0], and the growth-factor
“Zel’dovich” momentum initialized as Πi ¼ −∇qϕinijXi

.
We emphasize that—in contrast to LPT—the time

integration of cosmological N-body systems using Π
integrators is UV complete in that the N-body dynamics
should converge towards the VP solution in the limit of
infinitely many particles and time steps, even in the highly
nonlinear multistreaming regime (albeit the mathematical
proof thereof is still missing; but see, e.g., [38,39]).
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Towards the fluid limit: Suppressing particle noise
with sheet-based interpolation.—In this Letter, we focus
on the particle-mesh (PM) method for the force computa-
tion, but we also briefly consider tree-PM [40,41] and the
nonuniform fast Fourier transform (FFT). To control
particle discreteness effects at the required level, we apply
four important steps: (1) Increasing the number of gravity
source particles (“resampling”) by sheet interpolation
during the force calculation (extending the quadratic
interpolation of Ref. [42] to Fourier interpolation, see
also Ref. [43]) (2) Using higher-order mass-assignment
schemes to represent particle positions more accurately [44]
and deconvolving the density field on the grid with the
mass assignment kernel (3) Using grid interlacing to
suppress low-order aliases [28] (4) Using the exact gradient
kernel ik for the force calculation, rather than a finite
difference gradient kernel. The sheet interpolation has by
far the largest effect in terms of suppressing discreteness.
It harnesses the fact that for cold ICs, the phase-space
density fðt; x; pÞ in the VP equation (1) occupies a three-
dimensional manifold in the six-dimensional phase space at
all times, the Lagrangian submanifold. Hence, to increase
the spatial resolution of the gravitational potential, we
can “spawn” new N-body gravity source particles in
Lagrangian space on a finer grid, determine their displace-
ment by Fourier interpolation, and compute the resulting
force on the N particles using this refined potential field.
For illustration, Fig. 1 shows a plot of the z ¼ 0 density

field with N ¼ 5123 particles, evaluated on a grid with
M ¼ 10243 cells, from a standard N-body simulation (left
half) and a simulation with 53-fold resampling of each
particle for the density computation and the other discrete-
ness reduction techniques applied in each simulation step
(right half). The density field in the standard simulation is
poorly sampled, particularly in underdense regions, with
many cells containing no particles and hence δN ¼ −1. The
resampling evidently suppresses discreteness and leads to a

much more continuous density field. (Because of increas-
ing complexity, the sheet-based interpolation [42,45]
should not be applied in halo regions without using any
refinements. Figure 1 is intended for illustrative purposes;
here, we employ resampling only in the fluid regime at
early times when it is well suited to suppress discreteness.)
For a detailed explanation of each of these techniques, we
refer to the Supplemental Material [46].
Initializing simulations without LPT.—We will now

perform a single PowerFrog DKD time step starting from
z ¼ ∞ (i.e., a ¼ 0) to a redshift where one would typically
initialize a cosmological simulation with 3LPT, namely,
z ¼ 18. We checked that the Jacobi determinant
det ðdx1LPT=dqÞ > 0 for all particles at that time, and the
standard deviation of the density field σðδ1LPTÞ ¼ 0.30.
Hence, the entire simulation box is still in the single-stream
regime, for which there is strong evidence that LPT
converges [12,15].
We consider the evolution of N ¼ 5123 particles in a

periodic simulation box of edge length L ¼ 100 Mpc=h
subject to a flat ΛCDM cosmology with Ωm ¼ 0.3,
H0 ¼ 67.11 km=s=Mpc, ns ¼ 0.9624, σ8 ¼ 0.8. We per-
form our computations on a single GPU, computing the
forces with the PM method at grid resolution M ¼ 10243.
Figure 2 depicts the residual between the 1-step N-body

result and different LPT orders at z ¼ 18; specifically, we
show a slice of the displacement component Ψx. In view of
PowerFrog being designed to only match the 2LPT asymptote
for a → 0, it might surprise that the 1-step N-body
displacement lies even closer to 3LPT and 4LPT than to
the 2LPT result. Intuitively, this can be understood by
noting that the LPT terms are computed at the Lagrangian
particle positions, that is, by pulling back the evolution of
each particle to its initial location, while the kick in the
N-body step updates the velocities at growth-factor time
ΔD=2 directly based on the potential that solves the
Poisson equation at that time, which excites higher-order
LPT terms; we leave a detailed investigation on this for
future work.
We remark that also the velocity field is in good agreement

with its LPT counterpart (see the Supplemental Material
[46]). The excellent match between the positions and
momenta of a single PowerFrog step and high-order LPT
makes the initialization of cosmological simulations
directly at the origin of time at a ¼ 0 with PowerFrog (or
another integrator that follows the ≥ 2LPT asymptotic
behavior for a → 0) an attractive alternative to the traditional
LPT-based ICs.
We now study how the different discreteness reduction

techniques affect the numerical solution of the N-body
simulation. Figure 3 shows the relative root-mean-square
(rms) error of the displacements between a single N-body
step from z ¼ ∞ to z ¼ 18 using all discreteness suppres-
sion methods discussed above, together with the
results when omitting one of these techniques at a time.

FIG. 1. Slice through the overdensity field at z ¼ 0 of a
standard N-body simulation (left half) and a simulation with
discreteness reduction techniques applied (in each time step,
as well as for the computation of the plotted density slice,
right half). The particle and grid resolutions for both cases are
N ¼ 5123 and M ¼ 10243.
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Clearly, the sheet-based resampling of the density is crucial
for achieving convergence between N-body and LPT:
without it, the residual towards LPT is entirely dominated
by errors due to the particle-based approximation of the
continuous density at a level of ∼50%, and no differences
between the different LPT orders are visible. The second-
most important technique is the deconvolution of the
density with the mass assignment kernel, whose absence
results in significant high-frequency noise that conceals the

3–4LPT contributions in the residual. The residual also
increases substantially when reducing the number of PM
grid cells from M ¼ 23N to M ¼ N or when using cloud-
in-cell (CIC) instead of piecewise-cubic spline (PCS) mass
assignment. The impact of dealiasing the density by means
of interlaced grids, and of using the exact Fourier gradient
kernel ik instead of a 4th-order finite-difference gradient
kernel is much more modest; however, leaving out any of
these methods imprints a characteristic grainy structure in
the 3–4LPT residuals. With all techniques active, the 3LPT
vs 1-step PowerFrog residual is only 0.1%. For completeness,
we also show the residuals when replacing the local PM
mass assignment by Ref. [66]’s implementation of the
nonuniform FFT [67–69] together with resampling, which
yields the same residuals as our PM baseline and could be
an exciting avenue for future exploration. Using tree-PM
for the force computation (without resampling) rather than
PM also somewhat reduces discreteness, but much less than
in our discreteness-suppressed PM baseline.
Finally, the green hexagons show the residual when

performing a single step with the (DKD variant of the)
FastPM stepper instead of PowerFrog which, recall, is con-
sistent with the Zel’dovich approximation, but whose
asymptotic behavior for a → 0 differs from 2LPT.
Clearly, there is a significant 2LPT contribution in the
residual, which prevails in the residuals with respect to
higher LPT orders. A plot of the residual fields and their
power spectra can be found in the Supplemental Material
[46]. FastPM is therefore not suitable as a 1-step initializer.
In principle, it should be possible to construct integra-

tors that match even higher LPT orders with a single time
step by composing each step out of more than three drift
or kick components, but the gain from going beyond
3LPT can be expected to be relatively small in practical
applications. After the first time step, the assumption that
the time step starts in the asymptotic regime at a ≈ 0 is no
longer exactly valid, and second-order-in-a residuals arise
with PowerFrog; we will explore potential improvements in
this regard in future work.
Analysis at z ¼ 0.—Finally, let us comment on the

results one obtains when using the positions and momenta

FIG. 2. Residuals of the x displacementΨx between our results with a single PowerFrogN-body step from redshift z ¼ ∞ to z ¼ 18 and
the corresponding LPT fields at z ¼ 18 for different LPT orders. Shown is a slice in the Lagrangian y-z coordinate plane.

FIG. 3. Relative rms displacement error between the 1-step N-
body simulation and different LPT orders at z ¼ 18 when using
the PowerFrog integrator and applying all discreteness reduction
techniques (“original”), when omitting one technique at a time,
and when performing a FastPM DKD step instead of a PowerFrog
step (applying all discreteness reduction techniques). Evidently, a
carefully designed time integrator, resampling, deconvolution,
higher-order mass assignment, and a fine PM grid (e.g.,
M ¼ 23N) are all key ingredients to access the 3LPT regime.
We also show the residuals when using the nonuniform FFT
instead of local mass assignment (with resampling), and with
tree-PM force computation (without resampling).
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computed with a single PowerFrog step as the ICs for a
(standard) cosmological simulation down to z ¼ 0. We take
the same cosmology as in the previous section, N ¼ 5123

particles, and initialize the simulations either with 1, 2, or
3LPT, or with a single N-body time step (that starts from
z ¼ ∞) at z ¼ 36; then, we run a cosmological simulation
with the industry standard code Gadget-4 [70]. For the single
N-body step, we consider PowerFrog (i) with discreteness
suppression and grid sizes M ¼ 5123 and 10243, (ii) with-
out any discreteness suppression and M ¼ 5123, (iii) a
FastPM DKD step with discreteness suppression, (iv) non-
uniform FFT forces with resampling, and (v) tree-PM
forces (without resampling).
Figure 4 shows the power spectrum ratio at z ¼ 0 w.r.t.

the 3LPT ICs, which we take as our reference. Interestingly,
even without any discreteness suppression, the residual
between the power spectra with PowerFrog and 3LPT ICs is
≤ 1% on all scales. Also, for the equilateral bispectrum,
we find excellent agreement; however, the cross-spectrum
drops significantly when omitting the discreteness reduc-
tion (e.g., from 99% to 90% at k ¼ 21 h=Mpc, see the
Supplemental Material [46]). This implies that, in principle,
standard N-body simulations can be started with a
PowerFrog-like stepper without any discreteness suppression,
and the resulting z ¼ 0 density field will be correct in terms
of power spectrum and bispectrum, but its phases will be
somewhat corrupted due to the discreteness.
Discussion.—In this Letter, we have provided the first

demonstration of the field-level agreement between high-
order LPT and cosmological N-body simulations in the
single-stream regime. Choosing kinematic variables in
which the solution remains regular for a → 0 allowed us
to initialize simulations at the origin of time, making the

customary LPT-based computation of the initial conditions
at some scale factor a > 0 obsolete—provided discreteness
artifacts are sufficiently suppressed. Remarkably, the use
of an LPT-informed time integrator implies that a single
N-body step starting from a ¼ 0 yields more accurate
results than 2LPT, which is the established technique for
initializing cosmological simulations.
From a practical point of view, this opens up a wide

range of applications: the computational cost of the
discreteness-suppressed step we applied to obtain the close
match with LPT at early times shown in Fig. 2 is similar to
that of 3LPT, but already applying very few or even none of
these techniques might give sufficiently accurate results in
fast simulations and for analyses focused on late times (see
the highly accurate power spectrum for “No suppression”
in Fig. 4). Also, an N-body initialization step from a ¼ 0
might be superior in terms of memory requirements—no
matter how fine the grid in Lagrangian space used for the
resampling—as no large arrays need to be stored for each
LPTorder. Another interesting scope of application is given
by zoom simulations, where the intricacies in the (usually
FFT-based, but cf. [22] for 2LPT computed in configura-
tion space) LPT computation arising from different reso-
lutions can be circumvented.
In the era of precision cosmology, it is crucial to

thoroughly test the agreement of complementary approaches
to structure formation such as perturbative techniques and
numerical methods and to clearly identify their range of
validity. Our findings in this Letter lay the groundwork
for further comparison studies at the intersection between
analytical and numerical methods.

We thank Raul Angulo and Jens Stücker for insightful
discussions. O. H. thanks Tom Abel for many past dis-
cussions on discreteness and the sheet. A software package
implementing the discussed algorithms will be released in
the near future.
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