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Sensing a classical signal using a linear quantum device is a pervasive application of quantum-enhanced
measurement. The fundamental precision limits of linear waveform estimation, however, are not fully
understood. In certain cases, there is an unexplained gap between the known waveform-estimation
quantum Cramér-Rao bound and the optimal sensitivity from quadrature measurement of the outgoing
mode from the device. We resolve this gap by establishing the fundamental precision limit, the waveform-
estimation Holevo Cramér-Rao bound, and how to achieve it using a nonstationary measurement. We apply
our results to detuned gravitational-wave interferometry to accelerate the search for postmerger remnants
from binary neutron-star mergers. If we have an unequal weighting between estimating the signal’s power
and phase, then we propose how to further improve the signal-to-noise ratio by a factor of

ffiffiffi
2

p
using this

nonstationary measurement.

DOI: 10.1103/PhysRevLett.132.130801

In our efforts to probe fundamental physics, we invar-
iably encounter the quantum limit: the irrevocable statis-
tical nature of our reality [1–3]. This fundamental
uncertainty of our measurement devices limits the precision
at which we can sense classical signals.
We consider the general problem of estimating a real

classical signal sðtÞ for all times t using a linear quantum
device as shown in Fig. 1(a) [4]. The device evolves linearly
according to a Hamiltonian ĤðtÞ ¼ Ĥ0 þ ĤintðtÞ with the
interaction ĤintðtÞ ¼ −sðtÞĜ [5]. Observables that do not
commute with the generator Ĝ (an internal degree of
freedom) respond linearly to sðtÞ.We assume that the device
is in a stationary state of Ĥ0 which is time invariant. In the
input-output formalism [6], information about the signal
leaks out of the device into the environment imprinted on an
outgoing mode of a bosonic field. By measuring this mode,
we obtain a classical estimate of the classical signal
mediated by the quantum device. The outgoing bosonic
mode at each position and time is a harmonic oscillator with
canonical quadratures x̂ and p̂ which obey ½x̂; p̂� ¼ i (let
ℏ ¼ 1 henceforth). Let x̂θ ≔ cosðθÞx̂þ sinðθÞp̂ for real θ
such that the outgoing mode is [7,8]

x̂θðtÞ ¼ x̂ð0Þθ ðtÞ þ
Z

∞

−∞
dt0 χxθGðt − t0Þsðt0Þ ð1Þ

where the superscript (0) denotes the free evolution under

Ĥ0 and the susceptibility is χxθGðt − t0Þ ≔ i½x̂ð0Þθ ðtÞ;
Ĝð0Þðt0Þ�Θðt − t0Þ with Θ the Heaviside function. In the

Fourier domain, Eq. (1) becomes

x̂θðΩÞ ¼ x̂ð0Þθ ðΩÞ þ χxθGðΩÞs̃ðΩÞ ð2Þ

where the mode at each frequency Ω is displaced by the
signal’s complex Fourier component s̃ðΩÞ≔R∞

−∞dteiΩtsðtÞ.
Since sðtÞ, x̂θðtÞ, and χxθGðtÞ are real, their Fourier compo-
nents obey s̃ð−ΩÞ ¼ s̃†ðΩÞ etc. such that it suffices to
consider only positive frequencies.
Quantum metrology extends the classical theory of

estimating parameters from a probability distribution. In
particular, the quantum Cramér-Rao bound (QCRB) [9,10],
sets a fundamental precision limit: a lower bound on the
variance of unbiased estimation of parameters encoded in a
quantum state. This limit only depends on the state itself
and not on the measurement scheme. In the real single-
parameter case, the QCRB can always be saturated by the
optimal measurement if the sample size is large [9].

FIG. 1. (a) A linear quantum device coupled to a classical
signal. (b) For example, a gravitational-wave interferometer.
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Additionally, if the parameter appears as the shift in the
mean of a Gaussian state, then the QCRB can be saturated
for any sample size. In the multiparameter case, however,
reaching the QCRB is not guaranteed. In general, the
QCRB can be saturated if and only if the symmetric
logarithmic derivatives with respect to the parameters
weakly commute [11]. For real parameters sj encoded
as the shift in the mean of a Gaussian state by the uni-
tary transformation expð−iPj sjĜjÞ, this condition is

equivalent to the generators Ĝj weakly commuting, i.e.,
h½Ĝj; Ĝk�i ¼ 0, ∀ j; k.
Here, we want to simultaneously estimate the continuum

of independent complex parameters s̃ðΩÞ in Eq. (2), one for
each positive frequency Ω.
We assume that the linear device is at the quantum limit

such that it is in a pure Gaussian state. The waveform-
estimation QCRB SwaveQ [4] sets a lower bound on the error
Sss of unbiased estimation of s̃ðΩÞ of

SxθxθðΩÞ
jχxθGðΩÞj2

≕ SssðΩÞ ≥ SwaveQ ðΩÞ ≔ 1

SGGðΩÞ
ð3Þ

where the power spectral density Sz1z2 for stationary
random processes ẑ1 and ẑ2 is defined as

2πδðΩ −Ω0ÞSz1z2ðΩÞ ¼ hfẑ1ðΩÞ; ẑ†2ðΩ0Þgi: ð4Þ

The QCRB depends only on the reciprocal of the fluctua-
tions of the generator SGG.
This can be explained by the generalized uncertainty

principle for waveform estimation [12]

SxθxθðΩÞSGGðΩÞ ≥ jχxθGðΩÞj2 þ jSxθGðΩÞj2 þ cðΩÞ ð5Þ

where, in the quantum limit, this is an equality and cðΩÞ is a
term that vanishes [5].
From Eq. (5), Ref. [5] showed that measuring the

stationary complex quadrature x̂θðΩÞ saturates the
QCRB in Eq. (3) if and only if it is uncorrelated with
the generator, i.e., SxθG ¼ 0. Furthermore, Ref. [5] showed
that when SxθG ≠ 0, ∀ θ the optimal error Sss is still within
a factor of 2 of the QCRB.
It is not necessary a priori, however, that we measure a

stationary complex quadrature x̂θðΩÞ. Equation (3) only
applies to such stationary measurements. This leaves
several important questions unanswered. What is the
QCRB in general and when can it be saturated? If it cannot
be saturated, then what is the optimal precision? And, what
measurement attains this limit? We will answer these
questions and demonstrate our results using gravita-
tional-wave interferometry.
Cosine and sine phases.—At the positive frequency Ω,

let s̃ðΩÞ ¼ πTðAþ iBÞ where A and B are independent
real degrees of freedom and T is the finite integration time.

In the time domain, this component of the signal is
A cosðΩtÞ þ B sinðΩtÞ at a given time t where A and B
are the cosine and sine phases of the signal sðtÞ at
frequency Ω, respectively.
Our goal of measuring the signal s, therefore, is

equivalent to simultaneously estimating A and B at each Ω.
Our weighted figure of merit for the precision at Ω is

Σ ¼ 2wVar½Â� þ 2ð1 − wÞVar½B̂� where w∈ ð0; 1Þ and Â
and B̂ are unbiased estimates of A and B, respectively.
(Without loss of generality, we can assume that our weight
matrix is diagonal.) The weights may be unequal w ≠ 0.5
for several reasons. For example, if we want to estimate the
signal’s power js̃j2 ∝ A2 þ B2 more than its phase, then the
weights would be unequal because the derivatives of js̃j2
depend on A and B. We assume a uniform prior on A and B
and distinguish that, while unequal weights indicate how
much more is wanted to be known a posteriori about A than
B, a nonuniform prior would indicate how much more is
known a priori about A than B [13–15].
Similarly to the signal, we can split the complex quad-

ratures of the outgoing light x̂θðΩÞ into their real and
imaginary parts in the frequency domain. Or, equivalently,
into their cosine and sine phases in the time domain, e.g., see
Refs. [16,17]. These parts are Hermitian but nonstationary.
In this manner, Eq. (2) becomes

⃗q̂ ≔
1ffiffiffiffiffiffi
πT

p

2
6664
Re½x̂ðΩÞ�
Re½p̂ðΩÞ�
Im½x̂ðΩÞ�
Im½p̂ðΩÞ�

3
7775 ¼ ⃗q̂ð0Þ þ Ad⃗A þ Bd⃗B: ð6Þ

Let χ⃗ ¼ ½χxGðΩÞ; χpGðΩÞ�T, then the real signal displace-
ments are

d⃗A ≔
ffiffiffiffiffiffi
πT

p �
Re½χ⃗�
Im½χ⃗�

�
; d⃗B ≔

ffiffiffiffiffiffi
πT

p �−Im½χ⃗�
Re½χ⃗�

�
: ð7Þ

These are orthogonal and have the same Euclidean norm

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πT

�jχxGðΩÞj2 þ jχpGðΩÞj2
�q
: ð8Þ

Since ½x̂ðΩÞ; p̂ðΩ0Þ� ¼ i2πδðΩ − Ω0Þ, by using Re½z� ¼
1
2
ðzþ z�Þ and Im½z� ¼ ð1=2iÞðz − z�Þ we have that

½ ⃗q̂1; ⃗q̂2� ¼ ½ ⃗q̂3; ⃗q̂4� ¼ i with all other commutators zero ( ⃗q̂j
is the jth element of ⃗q̂). The system at each frequency,
therefore, comprises two real displaced harmonic
oscillators.
We assume that the noise is stationary such that the

complex quadratures ⃗x̂ ¼ ½x̂ðΩÞ; p̂ðΩÞ�T have the 2-by-2

covariance matrix 1
2
hf ⃗x̂ð0Þj ; ⃗x̂ð0Þk gi ¼ ðV2Þjk and the parts ⃗q̂

have the 4-by-4 covariance matrix 1
2
hf ⃗q̂ð0Þj ; ⃗q̂ð0Þk gi ¼

ðV2 ⊕ V2Þjk. (Without loss of generality, we assume that

h ⃗x̂ð0Þi ¼ 0.) Since the device is linear, distinct frequencies
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are uncorrelated. For the moment, we assume that the pure
state at each frequency is vacuum, i.e., V2 ¼ diagð1

2
; 1
2
Þ, and

will generalize later.
To measure A and B from the output light in Eq. (6), the

naïve optimal unbiased estimates are Ânaïve ¼ l−2d⃗A · ⃗q̂ and
B̂naïve ¼ l−2d⃗B · ⃗q̂. The variance of each estimate is 1

2
l−2

such that the naïve figure of merit is Σnaïve ¼ l−2. [Note that
Σnaïve ∝ T−1 by Eq. (8) such that integrating for longer
times reduces the error as expected].
These measurements, however, may not commute since

½Ânaïve; B̂naïve� ¼ iμl−2 where

μ ¼ 2πTl−2ðRe½χpG�Im½χxG� − Re½χxG�Im½χpG�Þ ð9Þ

such that 0 ≤ jμj ≤ 1. (Without loss of generality, we
assume that μ ≥ 0.) This means that A and B cannot be
simultaneously estimated to attain the naïve figure of merit
if μ ≠ 0. The displacements in Eq. (7) are generated by their
conjugate quadratures ĜA and ĜB which obey the same
commutation relation such that μ ¼ 0 is equivalent to the
weak commutativity condition h½ĜA; ĜB�i ¼ 0. The QCRB
for simultaneous estimation of A and B, therefore, can be
saturated if and only if μ ¼ 0which is equivalent to ∃ θ∈R
such that χxθG ¼ 0. In fact, the QCRB is precisely the na-ve
figure of merit above such that Σ ≥ ΣQ ¼ Σnaïve. This can
be shown from the result that the QCRB with respect
to sj given the unitary transformation expð−isjĜjÞ is
ð4Var½Gj�Þ−1 [9].
Fundamental precision limit.—If μ ≠ 0 such that the

QCRB cannot be saturated, then the optimal attainable
precision is instead the Holevo Cramér-Rao bound (HCRB)
ΣH which accounts for the commutator of the estimates
such that Σ ≥ ΣH > ΣQ [11,15,18,19]. Since the real
parameters A and B appear as the shift in the mean of a
pure Gaussian state, the HCRB is saturated by the optimal
commuting linear combinations of ⃗q̂ [11]. (This is equiv-
alent to finding the optimal quantum mechanics–free sub-
space [20].) We calculate the HCRB using the method from
Ref. [18] in the Supplemental Material [21].
We show that the ratio of the HCRB ΣH to the QCRB

ΣQ ¼ l−2 reduces to single-parameter optimization

ΣH

ΣQ
¼ min

ϕ∈ ð0;π�

�
w

cosðϕÞ2 þ
1 − w

cos½ϕþ arcsinðμÞ�2
�

ð10Þ

and we find analytic solutions in certain limits

ΣH

ΣQ
!μ¼1

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð1 − wÞ

p
;

ΣH

ΣQ
!w¼

1
2 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p : ð11Þ

Figure 2(a) shows that the ratio of the HCRB to the QCRB
is at most two which agrees with Ref. [5]. The HCRB
increases monotonically with μ and decreases as the

weights become less equal as shown in Fig. 2(b). The
HCRB reduces to the QCRB for single-parameter estima-
tion at w ¼ 0, 1.
These results generalize to squeezed states. Let Ŝ be the

conjugate squeezing operator such that V2 ↦ diagð1
2
; 1
2
Þ.

This unitary transformation does not affect μ or the bounds
but does map the signal displacements as d⃗ ↦ ðS ⊕ SÞd⃗
such that

l ↦ l0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πTðkSRe½χ⃗�k2 þ kSIm½χ⃗�k2Þ

q
: ð12Þ

The general stationary pure Gaussian state case, there-
fore, is equivalent to the vacuum case with the same μ andw
but with ΣQ ¼ ðl0Þ−2. We emphasize that we only apply Ŝ
mathematically to derive the bounds; it is not required
experimentally.
Optimal measurement scheme.—There exists a unique

symplectic transformation of the two harmonic oscillators
⃗q̂ ↦ ⃗X̂ ¼ ðX̂1; P̂1; X̂2; P̂2ÞT that maps the normalized
displacements as l−1d̂A ↦ X̂1 and l−1d̂B ↦ μP̂1 þffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
X̂2 such that their commutator remains iμ. In this

basis, the optimal commuting unbiased estimates are [21]

Â ¼ ½l cosðϕ̄Þ�−1½cosðϕ̄ÞX̂1 − sinðϕ̄ÞP̂2�
B̂ ¼ fl cos½ϕ̄þ arcsinðμÞ�g−1½cosðϕ̄ÞX̂2 − sinðϕ̄ÞP̂1� ð13Þ

where ϕ̄ is the optimal angle in Eq. (10).
These estimates are two nonstationary quadratures:

arbitrary real linear combinations of ⃗q̂. Compare this to
the stationary complex quadrature x̂θðΩÞ with the real
part cosðθÞ ⃗̂q1þsinðθÞ ⃗̂q2 and imaginary part cosðθÞ ⃗̂q3þ
sinðθÞ ⃗̂q4. For squeezed states, similarly, the optimal
measurement consists of two nonstationary quadratures
(mathematically, first apply Ŝ and then the symplectic
transformation).
We propose how to experimentally realize these non-

stationary measurements at a givenΩ. We expand ⃗q̂ into the
time domain using Re½x̂θðΩÞ� ¼

R∞
−∞ dt cosðΩtÞx̂θðtÞ and

Im½x̂θðΩÞ� ¼
R∞
−∞ dt sinðΩtÞx̂θðtÞ. Since the measurements

are linear combinations of ⃗q̂, therefore, they are Â ¼R∞
−∞ dtcAðtÞx̂θAðtÞðtÞ and B̂ ¼ R∞

−∞ dtcBðtÞx̂θBðtÞðtÞ for some

FIG. 2. (a) HCRB versus the commutator and weight.
(b) HCRB versus the weight for different commutators.
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real amplitudes cAðtÞ and cBðtÞ and phases θAðtÞ and θBðtÞ
[21]. For example, if w ¼ 1 such that we only want to
estimate A, then, as shown in Fig. 3(a), we use homodyne
readout with a phase-modulated local oscillator with phase
θAðtÞ to obtain the time series x̂θAðtÞðtÞ. By integrating this
time series multiplied by cAðtÞ in postprocessing, we can
achieve Â.
Suppose that instead we want to measure both Â and B̂.

Although Â and B̂ commute, their integrands cAðtÞx̂θAðtÞðtÞ
and cBðtÞx̂θBðtÞðtÞ above may not commute at a given time.
This prevents directly performing simultaneous modulated
homodyne measurements. If μ ¼ 1 such that the normal-
ized displacements are X̂1 and P̂1, however, then this can be
overcome by using an asymmetric beam splitter with
reflectivity cosðϕ̄Þ2 to mix in an ancillary mode (i.e.,
uncorrelated vacuum) as shown in Fig. 3(b). Then, meas-
uring d⃗A and d⃗B on the two output modes from the beam
splitter using modulated homodyne readouts commutes at
each time and saturates the HCRB for any w [21]. The
added noise from the ancilla is responsible for the gap from
the QCRB.
For the general case of any μ and w, we propose a joint

homodyne-heterodyne readout scheme. To obtain the
individual estimate of Â above, we integrated the time
series cAðtÞx̂θAðtÞðtÞ, but information is available at other
frequencies too. In particular, the 2Ω Fourier component
beats with the time series which oscillates atΩ to produce a
linear combination of the quadratures atΩ and 3Ω. This can
realize a heterodyne measurement of B̂ at Ω [21,22]. The
added heterodyne noise at 3Ω can be suppressed by
squeezing the output mode using two cascaded, detuned,
and narrow band filter cavities—one for each of the upper
and lower sidebands at 3Ω—without affecting the estimates
or the fundamental limits at Ω. The HCRB, therefore, can
be saturated in the narrow band around Ω using a
homodyne measurement of Â and a simultaneous hetero-
dyne measurement of B̂.
Gravitational-wave interferometry.—We demonstrate

our results for a gravitational-wave interferometer like
the Laser Interferometric Gravitational-wave Observatory
(LIGO) [23,24] operated in a hypothetical detuned con-
figuration. For simplicity, we model LIGO as a power-
recycled Fabry-Pérot Michelson interferometer as shown in
Fig. 1(b) with vacuum input into the “dark port” of the
beam splitter [25,26]. In our detuned configuration, the

4-km arm cavities with 750 kW of circulating power are
detuned away from the input carrier laser frequency of
282 THz by Δ ¼ 2π × 3 kHz [27–33]. We are interested in
detecting 1–4 kHz gravitational-wave signals, e.g., from the
postmerger remnant of binary neutron-star mergers, to test
our theories of extreme matter [34–42]. (Since we focus on
the kilohertz response, we ignore quantum radiation pres-
sure noise [3].) Detuning the interferometer makes it
resonant at Δ which improves the peak sensitivity without
increasing the circulating power [43–45]. We emphasize
that operating LIGO in a detuned configuration presents
many technical challenges [33] and here we only want to
establish the fundamental limit of achievable sensitivity at a
given frequency to better evaluate this configuration.
The differential optical mode of the interferometer can be

approximated as a single mode in a detuned cavity linearly
coupled to the gravitational-wave strain sðtÞ by Ĥint ¼
gsðtÞx̂cav. Here, g is the effective coupling rate (mediated
by free masses in the transverse-traceless gauge) and x̂cav is
the amplitude quadrature of the intracavity mode such that
Ĝ ¼ −gx̂cav [46]. The resulting susceptibility is [21]

χ⃗ ¼
ffiffiffiffiffi
2γ

p
g

Δ2 þ ðγ − iΩÞ2
� Δ
−γ þ iΩ

�
ð14Þ

where γ ¼ 2π × 42 Hz is the half-width at half-maximum
readout rate of the arm cavities. By Eq. (9), μ ¼ ½2ΔΩ=
ðγ2 þ Δ2 þ Ω2Þ� such that the QCRB cannot be saturated
for Δ ≠ 0 which agrees with Ref. [5].
In Fig. 4, we compare the HCRB versus frequency to the

sensitivity using the optimal stationary quadrature (also
known as “variational readout”) and nonstationary quad-
rature measurements. For equal weights, the stationary
measurement saturates the HCRB such that the gap to the
QCRB is insurmountable. For unequal weights, however,
our nonstationary measurement is required to saturate
the HCRB.

FIG. 3. (a) Phase-modulated balanced homodyne readout.
(b) Asymmetric beam splitter with power reflectivity cosðϕ̄Þ2.

FIG. 4. Strain sensitivity for the detuned LIGO-like interfer-
ometer versus frequency for different weights in (top row)
effective amplitude spectral density units and (bottom row) ratio
to the QCRB.
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This unequal weight regime is relevant because, e.g.,
astrophysically we care more about knowing some param-
eters of the neutron-star equation of state than others. This
can be reduced to having an unequal weighting between the
signal’s power and phase and, therefore, between A and B.
For example, we particularly want to estimate the primary
peak of the kilohertz power spectrum to inform our
understanding of the equation of state [47]. In the future,
with more precise numerical models of the postmerger
signal, we may be able to confidently determine the phase
of the postmerger signal from a strong enough detection of
the inspiral phase. We then only need to estimate the
postmerger signal’s power which is equivalent to having
weights w ¼ 0 or 1. In this limiting single-parameter case,
we have shown that our nonstationary measurement
scheme improves the signal-to-noise ratio by up to a factor
of

ffiffiffi
2

p
at the detuning frequency, an improvement which

cannot be surpassed using a different measurement scheme.
This corresponds to up to a factor of 2.83 improvement in
the volume of the Universe searched for kilohertz signals at
the peak frequency, in addition to the gain provided from
detuning the interferometer. This could be a significant
boost to LIGO’s search for kilohertz gravitational waves
should the challenges with detuned interferometry be
overcome. More realistically, we may instead have partial
prior knowledge of the postmerger signal’s phase and
perform weighted simultaneous estimation of the signal’s
power and phase. We hypothesize that the sensitivity can
still be similarly improved in this regime and defer a
detailed study of this application to future work.
Losses limit the possible quantum enhancement of LIGO

(where Fig. 4 shows the lossless sensitivity). If we assume
optical losses of 100 ppm (γl ¼ 2π × 0.3 Hz) in the arm
cavities and η ¼ 0.1 in the output, then l ↦

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
l and

μ ↦ f2ΔΩ=½ðγ þ γlÞ2 þ Δ2 þ Ω2�g [21]. Since γl ≪ γ ≪
Δ, μ is unchanged. This implies that the gap from the
HCRB to the relevant QCRB, ΣQ ≈ ð1 − ηÞ−1l−2, is also
unchanged and our nonstationary measurement can still
achieve up to a factor of

ffiffiffi
2

p
improvement with losses.

Conclusions.—We have shown how to achieve the
fundamental precision limit for the estimation of a classical
signal using a linear quantum device. Previous work on
linear waveform estimation found an unexplained gap of up
to a factor of

ffiffiffi
2

p
in the signal-to-noise ratio between the

optimal stationary quadrature measurement and the QCRB.
We showed that this gap stems from the noncommutativity
of the na-ve estimates of the cosine and sine phases of the
signal at each frequency. This allowed us to establish the
fundamental limit of attainable precision and propose how
to experimentally realize the optimal nonstationary meas-
urement scheme. We applied these results to the search for
postmerger gravitational-wave signals from binary neutron-
star mergers using a detuned LIGO-like interferometer. We
showed that this nonstationary measurement scheme could
significantly increase the volume of the Universe probed

for such signals at a given frequency in the unequal weight
regime.
Future work could determine the broadband optimal

measurement scheme and apply our results to a dual-
recycled LIGO-like interferometer with injected squeezed
states [48–50] and extend them to other systems, e.g.,
PT -symmetric interferometers [51–56], axion detectors
[57–60], and displacement noise-free interferometers
[17,61,62].

Our code is available online [63] and was written using
Mathematica [64] and PYTHON [65–69].
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