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The Gottesman-Kitaev-Preskill (GKP) code may be used to overcome noise in continuous variable
quantum systems. However, preparing GKP states remains experimentally challenging. We propose a
method for preparing GKP states by engineering a time-periodic Hamiltonian whose Floquet states are
GKP states. This Hamiltonian may be realized in a superconducting circuit comprising a SQUID shunted
by a superinductor and a capacitor, with a characteristic impedance twice the resistance quantum. The GKP
Floquet states can be prepared by adiabatically tuning the frequency of the external magnetic flux drive.
We predict that highly squeezed >11.9 dB (10.8 dB) GKP magic states can be prepared on a microsecond
timescale, given a quality factor of 106 (105) and flux noise at typical rates.
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The Gottesman-Kitaev-Preskill (GKP) code encodes dis-
crete variable quantum information into continuous variable
quantum systems, and may be used to protect the encoded
information from noise [1–4]. GKP states have recently been
prepared and stabilized experimentally in trapped ion [5,6]
and circuit quantum electrodynamics (QED) architectures
[7–9], using an ancillary qubit to performphase estimation of
the GKP code stabilizers [4,10–12]. However, preparing
high-quality GKP states remains a central challenge for
practical quantum error correction with GKP codes.
An alternative approach has been proposed theoretically,

where GKP states arise naturally as eigenstates of super-
conducting circuits with a carefully engineered phase-charge
symmetry [13–15]. This passive approach is appealing, but
the proposals rely on exotic circuit elements that may be hard
to realize in practice. In Ref. [16], it was recently shown that
circuit complexity can be traded for time-dependent control,
by demonstrating howGKP states can arise as Floquet states
of a periodically displaced harmonic oscillator (HO). Here,
the price to pay is instead precise, high-frequency control, as
the scheme relies on periodic, near-instantaneous displace-
ments of theHO state (see the SupplementalMaterial [17] for
a detailed comparison to this work).
Building on the idea of trading hardware for control

complexity, we propose an ancilla-free method based on
modulating a nonlinear element. This scheme may be
realized, for example, with a SQUID shunted by a super-
inductor and a capacitor. We show that with this nonlinear
control mechanism, a small number of harmonics of the
circuit frequency suffices for the control signal. Numerical
simulations indicate that GKP states with large squeezing
levels >11.9 dB (10.8 dB) can be realized even in the

presence of flux noise at realistic rates and photon loss
assuming a quality factor of 106 (105).
In this Letter we focus on the single-mode square GKP

code, which has commuting stabilizer generators D̂ð ffiffiffiffiffiffi
2π

p Þ
and D̂ð ffiffiffiffiffiffi

2π
p

iÞ, where D̂ðαÞ ¼ eαâ
†−α�â is the displacement

operator for a bosonic mode with annihilation operator â,
satisfying ½â; â†� ¼ 1. Equivalently, the codespace may be
defined as the twofold degenerate ground space of the GKP
Hamiltonian [1]

ĤGKP=ℏ ¼ −Jðcosð2 ffiffiffi
π

p
x̂Þ þ cosð2 ffiffiffi

π
p

p̂ÞÞ; ð1Þ

where ℏJ defines the energy scale and x̂ ¼ ðâ† þ âÞ= ffiffiffi
2

p

and p̂ ¼ iðâ† − âÞ= ffiffiffi
2

p
are the dimensionless position and

momentum quadratures. Note that the GKP Hamiltonian is
a special case of the Harper model [34,35], which is of
importance in studies of quantum chaos and topological
insulators [36–39].
As the eigenstates of the GKP Hamiltonian are not

normalizable, they cannot be prepared exactly. Instead one
must resort to states that approximate ideal GKP states [1].
To characterize how close a state is to an ideal GKP state,
we use the GKP squeezing parameter [40]

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2π
log

�
jhD̂ð

ffiffiffiffiffiffi
2π

p
Þij2

�r
; ð2Þ

which we convert to decibels (dB) via S ¼ −10log10ðΔ2Þ,
and refer to as squeezing for short. Alternatively, the
squeezing may be measured with respect to the orthogonal
stabilizer generator D̂ði ffiffiffiffiffiffi

2π
p Þ, but for symmetrically
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squeezed states these two values are equal. Note that Δ
approaches zero (S → ∞) as jhD̂ð ffiffiffiffiffiffi

2π
p Þij approaches one

and the state approaches the GKP codespace. Numerical
studies suggest that squeezing in the range 10–12 dB is
required for scalable error correction [41–44].
While the squeezing quantifies how close an arbitrary

state is to the GKP codespace, it does not give any
information about the logical information contained in
the state. To quantify this, we use the subsystem decom-
position introduced in Ref. [45]. Under this decomposition,
a partial trace operation amounts to an ideal decoder D
that takes density matrices in the bosonic Hilbert space
to logical 2 × 2 density matrices. This can be used to
introduce a logical fidelity metric, by computing the
fidelity of the decoded state to a target logical state.
In the following, we introduce an approximate form of

the GKP Hamiltonian, arising as an effective stroboscopic
Hamiltonian in a periodically driven system. At its core, our
scheme substitutes the requirement of periodicity in two
conjugate variables [cf. Eq. (1)], with periodicity in one
variable and time. Our approach utilizes similar techniques
to Floquet engineering topological phases via driving
otherwise trivial and simple systems [46,47], and extends
these tools to the domain of quantum error correction.
The kicked HO.—Consider the time-periodic Hamiltonian

ĤðtÞ=ℏ ¼ ω0â†â − JfðtÞ cosð2 ffiffiffi
π

p
x̂Þ; ð3Þ

with the periodic driving function fðtÞ ¼ ðT=2Þ×P∞
n¼0 δðt − nT=4Þ, where δðtÞ denotes the Dirac delta

function,ω0 is the HO frequency, and T is the driving period
[48]. This “kicked HO” model, which represents a freely
evolving HO interspersed with four delta-function kicks
within one driving period, was previously studied for
exploring many-body topological phases [49]. The one-
period time-evolution operator (referred to as the Floquet
operator) for this model can be written as ÛT ¼
ðe−iω0â†âT=4e−iJ cosð2

ffiffi
π

p
x̂ÞT=2Þ4.

If the HO frequency is made equal to the driving fre-
quency (ω0 ¼ 2π=T), then via the formula eiθâ

†âx̂e−iθâ
†â ¼

x̂ cos θ þ p̂ sin θ, we may rotate half of the cosð2 ffiffiffi
π

p
x̂Þ

terms to cosð2 ffiffiffi
π

p
p̂Þ terms. In this special case, the one-

period time evolution becomes equivalent to a kicked
Harper model [50,51]. Furthermore, since cosð2 ffiffiffi

π
p

x̂Þ
commutes with cosð2 ffiffiffi

π
p

p̂Þ, the Floquet operator may be
written as ÛT ¼ e−iTĤGKP=ℏ. That is, time evolution under
the time-dependent Hamiltonian for a single period is
equivalent to evolving under the static GKP Hamiltonian
in Eq. (1) for the same amount of time. This means that the
eigenstates of the Floquet operator, referred to as Floquet
states, are the ideal GKP states.
Harmonic driving scheme.—Exactly realizing the delta-

function drive is impractical. In the following we introduce
a new periodically driven model with a harmonic driving

scheme, motivated by the kicked HO model. We start by
truncating the Fourier series decomposition of the delta-
function drive at a finite number of harmonicsN [Fig. 1(a)],
to obtain

fðtÞ ¼ 2þ 4
XN
n¼1

cosð4nω0tÞ: ð4Þ

It may then be shown that for fixed N, the Floquet operator
takes the form ÛT ¼ e−iTĤF=ℏ, where

ĤF=ℏ ¼ ĤðNÞ
GKP=ℏþOðJ2=ω0Þ; ð5Þ

and ĤðNÞ
GKP is the GKP Hamiltonian [Eq. (1)] truncated at

the �4N diagonals in the Fock basis such that ĤGKP ¼
limN→∞Ĥ

ðNÞ
GKP. Thus, to zeroth order in J2=ω0, the effective

static Hamiltonian converges to the GKP Hamiltonian in
theN → ∞ limit. The details of this calculation are given in
the Supplemental Material [17].
The truncation in Fock space leads to two nearly

degenerate approximate GKP ground states whose squeez-
ing increases with the number of harmonics. Furthermore,

(a)

(b)

(c)

(d)

(e)

FIG. 1. The harmonic driving scheme. (a) The harmonic driving
function with N ¼ 4 harmonics (blue), and in the N → ∞ limit
(black). Arrows represent Dirac delta functions. Squeezing (b)

and logical fidelity (c) of the jψ ðNÞ
� i Floquet states as a function of

the number of harmonics N. Blue squares (orange circles) denote

values for the jψ ðNÞ
þ i (jψ ðNÞ

− i) state. (d) [(e)] Wigner function and

marginal probability distributions for jψ ð4Þ
þ i (jψ ð4Þ

− i). Red (blue)
represents positive (negative) values of the Wigner function. The
blue downward (orange upward) pointing triangles in (b) and
(c) correspond to the parameter values for the Floquet state in
(d) [(e)]. All results are for J=ω0 ¼ 2.5 × 10−3.
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the truncated GKP Hamiltonian has Fourier transform
symmetry for all N, that is ½ĤðNÞ

GKP; e
iπâ†â=2� ¼ 0, meaning

that its eigenstates are invariant under a Fourier transform.
Since the Fourier transform operator acts as the Hadamard
gate on a square GKP code [1], the two nearly degenerate
ground states are approximate GKP magic states [52].
Furthermore, this symmetry ensures that these states are
equally squeezed in both quadratures, justifying our choice
of metric in Eq. (2).
Consistent with the correction term in Eq. (5), for small

J=ω0, the Floquet states inherit the properties of the eigen-

states of ĤðNÞ
GKP (in theSupplementalMaterial [17]wequantify

this). To quantify the logical information of the Floquet states,
we compute their logical fidelity with the Hadamard eigen-

states, F̄� ¼ maxihH�jD½jψ ðNÞ
i ihψ ðNÞ

i j�jH�i, where jH�i
are the�1 eigenstates of the 2 × 2Hadamard gate, jψ ðNÞ

i i are
the Floquet states for anN-harmonic driving scheme, and we

denoteby jψ ðNÞ
� i theFloquet states that achieve thismaximum

fidelity (the Supplemental Material [17] contains details on
how we numerically implement the decoder D). Given that
the jH�i states aremagic states, wemay also view this metric
as quantifying the distillability of the Floquet states [52].
Numerical results for J=ω0 ¼ 2.5 × 10−3 are shown in

Figs. 1(b)–1(e). Here we find that the squeezing of the

jψ ðNÞ
� i Floquet states increases monotonically with N

[Fig. 1(b)], and that the logical fidelity generally increases
with N, albeit not monotonically [Fig. 1(c)]. In particular,

the jψ ð4Þ
þ i (jψ ð4Þ

− i) state, whose Wigner function and margi-
nal probability distributions are shown in Fig. 1(d) [Fig. 1(e)],
has logical infidelity 3.7 × 10−3 (5.5 × 10−3) and squeezing
11.9 dB (11.2 dB). This suggests that N ¼ 4 harmonics is
sufficient to generate high-quality GKP states. In the next
section we discuss how these parameter may be attained in a
circuit QED realization.
Circuit QED implementation.—While the driving

scheme could be implemented in a variety of quantum
computing architectures—in particular cold atoms may be
an intriguing platform [49]—here we focus on a proposal
using superconducting circuits [53]. We reserve the deri-
vation of the circuit Hamiltonian for the Supplemental
Material [17] and outline the main physical requirements
here.
Equation (3) can be realized as a symmetric SQUID loop

shunted by a linear inductor and a capacitor [Fig. 2(a)] with
circuit frequency 1=

ffiffiffiffiffiffiffiffiffi
LCΣ

p ¼ ω0 and circuit impedanceffiffiffiffiffiffiffiffiffiffiffiffi
L=CΣ

p ¼ 2RQ, where CΣ ¼ 2CJ þ C is the total capaci-
tance in the circuit, and RQ ¼ h=ð2eÞ2 is the resistance
quantum. We note that the same impedance condition
was necessary to realize the schemes in Refs. [15,16].
Although an impedance surpassing the resistance quantum
is difficult to realize with a conventional LC oscillator,
impedances larger than 2RQ have been obtained using
chains of Josephson junctions [54–58], thin-film disordered

superconductor nanowires [59], and suspended aluminium
coils [60]. As for the robustness to deviations from 2RQ, we
observe a decrease of no more than 0.7 dB (4 × 10−3) in the
squeezing (logical fidelity) of the GKP Floquet states for
variations of �0.1RQ (see the Supplemental Material [17]
for more details).
In order to implement the driving function, the external

flux threading the SQUID loop is varied as

ϕeðtÞ=ϕ0 ¼ π − ϵfðtÞ; ð6Þ

with jϵfðtÞj≪1 and ϵ ¼ ℏJ=EJ, where EJ is the Josephson
energy of each Josephson junction and ϕ0 ¼ ℏ=2e is the
reduced flux quantum. It is also necessary to thread
the inductive loop of the circuit with an external flux in
the opposite direction and with half the amplitude as Eq. (6)
to ensure the HO potential remains static [17,61–63].
Here we have assumed the Josephson energies to be equal
for simplicity, but we find the squeezing (logical fidelity)
of the GKP Floquet states to decrease by less than 0.7 dB
(4 × 10−3) for asymmetries of �0.05EJ (see the Supple-
mental Material [17] for more details).
As a concrete example, consider a HO frequency

ω0=2π ¼ 1 GHz and Josephson energy EJ=h ¼ 2 GHz
with ϵ ¼ 1.25 × 10−3, which yields a ratio of J=ω0 ¼
2.5 × 10−3. For modest N, this is a very small modulation
of the overall applied field, where ϕeðtÞ varies by no more
than 0.01Nϕ0 [Eq. (6)], and satisfies jϵfðtÞj ≪ 1. Since the
external flux must be modulated according to Eq. (4),
the maximum modulation frequency is 4Nω0. Therefore,
the limiting factor for generating highly squeezed GKP
states is the maximum modulation frequency that can be
achieved in an experiment. For an ω0=2π ¼ 1 GHz HO
frequency, N ¼ 4 harmonics implies a maximum modula-
tion frequency of 16 GHz.
State preparation.—We now explain how the GKP

Floquet states can be prepared. When the driving frequency
is detuned from the HO frequency, the Floquet operator

(a) (b)

FIG. 2. (a) Circuit diagram for the harmonic driving scheme.
The circuit comprises a symmetric SQUID loop with Josephson
energies EJ and capacitances CJ shunted by a linear inductor with
inductance L and capacitor with capacitance C. The two loops in
the circuit are threaded by external fluxes ϕe and ϕe=2 in opposite
directions (b) Frequency ramp for the external flux drive to
prepare GKP states with a preparation time tf. The driving is
switched off at t ¼ tf once the state is prepared (see discussion
and outlook section).
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becomes approximately diagonal in the number basis, with
nearly HO eigenstates as its Floquet states (see the
Supplemental Material [17] for the derivation). By adia-
batically tuning the driving frequency into resonance with
the HO frequency, the low-energy HO eigenstates are
adiabatically evolved into the GKP Floquet states.
Therefore, we replace ω0 in Eq. (4) with a tunable driving
frequencyωðtÞ. To maximize adiabaticity, the initial driving
frequency is chosen to be incommensurate with the driving
frequency ωð0Þ ¼ ω0=ð1 − π × 10−2Þ, and is tuned into
resonance using a sigmoid-function ramp with a numeri-
cally optimized slope [Fig. 2(b)]. In the Supplemental
Material [17] we give the precise equation of the ramp as
well as a more detailed explanation for why an incom-
mensurate detuning is chosen.
Using this protocol,we numerically observe that the jψ ðNÞ

þ i
(jψ ðNÞ

− i) Floquet state can be prepared from the j0i (j2i)
eigenstate of the HO. Note that the j0i and jψ ðNÞ

þ i (j2i and
jψ ðNÞ

− i) states both have eigenvalue þ1 (−1) for the Fourier
transform operator since the adiabatic process preserves
rotation symmetry. Furthermore, an arbitrary superposition

αj0i þ βj2i evolves into αjψ ðNÞ
þ i þ eiϕβjψ ðNÞ

− i, where ϕ is a
phase factor that accounts for the dynamical phase difference
acquired by the two Floquet states throughout the adiabatic
evolution, thus allowing an arbitrary logical state to be
prepared. In the following we focus on preparation of the

jψ ð4Þ
þ i Floquet state, and refer the reader to the Supplemental

Material [17] for results on preparation of other states.
For the remaining numerical results, we set N ¼ 4 and

J=ω0 ¼ 2.5 × 10−3. To assess the quality of the prepared
state, ρ̂ðtfÞ, we compute its squeezing and logical fidelity
{F̄ prep

þ ¼hHþjD½ρ̂ðtfÞ�jHþi} for different preparation times
tf (Fig. 3). We observe both the squeezing and logical
fidelity to increase over the range of preparation times of
1000≲ tf=T ≲ 2000 (blue solid lines in Fig. 3), after which

they plateau and converge to the values for jψ ð4Þ
þ i (dotted

black lines in Fig. 3), consistent with the adiabatic theorem
(in the Supplemental Material [17] we also plot the direct
fidelity between the prepared state and the Floquet state).
Interestingly, both the squeezing and logical fidelity of the
prepared state reach higher values than for the true Floquet

state jψ ð4Þ
þ i before converging to their values, and suggest

an optimal preparation time of tf=T ≈ 2000.
Noisy state preparation.—In a closed environment, the

adiabatic theorem dictates that the Floquet states may be
prepared from the HO eigenstates with perfect fidelity by
increasing the preparation time indefinitely. However, in
the presence of decoherence processes, a longer preparation
time may degrade the quality of the prepared state. Here
we consider two decoherence processes: photon loss and
dephasing due to flux noise.
To model photon loss, we consider the system

Hamiltonian in Eq. (3) coupled to a zero-temperature bath,

described by the Lindblad master equation [64]

˙̂ρðtÞ¼−
i
ℏ

�
ĤðtÞ; ρ̂ðtÞ�þ κ

�
â ρ̂ðtÞâ†−1

2
fâ†â; ρ̂ðtÞg

�
; ð7Þ

where ρ̂ðtÞ is the reduced density matrix for the system at
time t and κ is the photon-loss rate. We simulate photon loss
using Monte Carlo sampling [65] to generate the density
matrix as an ensemble average of many quantum trajecto-
ries (see the Supplemental Material [17] for more details).
In Fig. 3 we consider quality factors ofQ ¼ ω0=κ ¼ 106

(105), which correspond to T1 times of 1=κ ≈ 160 μs
(16 μs) for an ω0=2π ¼ 1 GHz HO. At a quality factor
of Q ¼ 105, our numerical results (red dot-dot-dashed
lines) reveal an optimal preparation time region at
1600≲ tf=T ≲ 1800, with a maximum squeezing (mini-
mum logical infidelity) of 11.0 dB (1.3 × 10−2) achieved at
the lower (upper) bound of this range. Increasing the
quality factor to Q ¼ 106 improves these values (orange
dot-dashed lines), with a maximum squeezing (minimum
logical infidelity) of 12.0 dB (3.2 × 10−3) attained at a
preparation time of tf=T ≈ 1600 (tf=T ≈ 2000).
In addition to photon loss, state preparation may be

affected by noise from the external flux, which is used to
modulate fðtÞ in Eq. (3). However, when considering
combined 1=f and white noise at experimentally measured
noise amplitudes [66–69] (green dashed lines in Fig. 3), we
find flux noise to have negligible impact on the quality of
the prepared state, with a decrease of less than 0.02 dB

(a)

(b)

FIG. 3. Quality of prepared GKP states. Squeezing (a) and
logical infidelity (b) of the prepared GKP state as a function of
preparation time. Blue solid lines denote preparation with no
photon loss and no flux noise, orange (red) (dot-)dot-dashed lines
represent the preparation with photon loss at a quality factor of
Q ¼ ω0=κ ¼ 106 (105), and green dashed lines represent prepa-
ration with flux noise. The black dotted lines represent the values

for the jψ ð4Þ
þ i Floquet state [blue downward triangles in Figs. 1(b)

and 1(c)]. All results are for J=ω0 ¼ 2.5 × 10−3 and N ¼ 4.
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(6 × 10−4) in the squeezing (logical fidelity) relative to the
lossless case over all preparation times tf=T ≲ 3500. Thus,
at quality factors of Q ≤ 106, photon loss will be the
dominant source of decoherence for state preparation. In
the Supplemental Material [17] we provide details on how
this flux noise was modeled, as well as results at different
flux noise strengths.
Overall, our results show that with flux noise and a quality

factor of Q ¼ 106 (Q ¼ 105), a GKP state with squee-
zing >11.9 dB (10.8 dB) and logical infidelity < 4 × 10−3

(2 × 10−2) may be prepared with a preparation time of
tf=T ≈ 1800 (2000), which corresponds to 1.8 μs (2.0 μs)
for an ω0=2π ¼ 1 GHz HO.
Discussion and outlook.—In this Letter we introduced a

time-periodic Hamiltonian that has GKP states as its
Floquet states, and showed how these states may be
prepared by adiabatic evolution of low-energy HO eigen-
states. We showed that this scheme may be realized in a
superconducting circuit with a SQUID shunted by a linear
superinductor and a capacitor. Numerical analysis of the
impact of photon loss and flux noise on the squeezing and
logical fidelity of the prepared state revealed that high-
quality GKP states may be prepared on a microsecond
timescale with experimentally achievable quality factors
and typical flux noise amplitudes [54–56,60,66–69]. This
represents an efficient way to prepare GKP states without
the need for an ancilla qubit. As our protocol naturally
gives rise to GKPmagic states, universality can be achieved
using only Clifford gates, which are realized with Gaussian
bosonic operations on GKP states [1,70].
A natural question is whether the periodic driving may

also be used to stabilize the GKP state once it has been
prepared, providing a form of autonomous error correction.
Because of the Floquet heating phenomenon [71,72], we
find that the periodic drive decreases the lifetime of the
GKP Floquet states (see the Supplemental Material [17] for
further details). Thus, once the states are prepared, the drive
should be turned off, and active error correction applied to
stabilize the GKP states. This can be achieved via coupling
to an ancilliary qubit, as has been done experimentally
[7,9], or by interacting GKP modes, as has been studied in
many theoretical works [4,42–44].
Our work also opens opportunities for realizing more

general Harper models beyond the GKP Hamiltonian,
using simple superconducting circuits. Besides the rich
and fascinating physics of the Harper model and its
topological features, an intriguing avenue for future work
is to investigate this broader class of models in the light of
quantum error correction, and the potential to realize new
quantum error correction schemes via periodic driving.
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