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Synthetic dimension is a potent tool in quantum simulation of topological phases of matter. Here we
propose and demonstrate a scheme to simulate an anisotropic Harper-Hofstadter model with controllable
magnetic flux on a two-leg ladder using the spin and motional states of a single trapped ion. We verify the
successful simulation of this model by comparing the measured dynamics with theoretical predictions
under various coupling strength and magnetic flux, and we observe the chiral motion of wave packets on
the ladder as evidence of the topological chiral edge modes. We develop a quench path to adiabatically
prepare the ground states for varying magnetic flux and coupling strength, and we measure the chiral
current on the ladder for the prepared ground states, which allows us to probe the quantum phase transition
between the Meissner phase and the vortex phase. Our work demonstrates the trapped ion as a powerful
quantum simulation platform for topological quantum matter.
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Topological quantum matter shows novel phases
of materials such as topological insulators, topological
superconductors, and quantum Hall phases that are char-
acterized by global properties rather than local order
parameters [1–3]. Spatial dimensionality plays a crucial
role in the classification of topological quantum matter.
Together with the symmetry of the system, it determines a
periodic table for the topological invariants [3]. Although
rich topological properties are predicted for high-
dimensional systems [4–7], to observe them in three-
dimensional materials in the laboratory can be a challenge.
An appealing alternative approach has been taken to
implement these models through quantum simulation, with
the extra dimensions synthesized from the various degrees
of freedom of the system [8–10]. Apart from exploring
high-dimensional physics, synthetic dimensions also pro-
vide a convenient way to engineer artificial gauge fields on
the simulated lattice through the site-dependent hopping,
which gives nonzero magnetic flux in each unit cell. Such
an artificial magnetic field can be much stronger than those
generated in real materials and can work for even neutral
particles, thus allowing efficient quantum simulation of
topological states like quantum Hall phases [10–13].
Various schemes have been taken to create synthetic

dimensions, such as the internal energy levels or discrete
momentum states of cold neutral atoms [11,12] and differ-
ent frequencies or orbital angular momenta in photonics
[13]. Fock states of oscillation modes are also proposed as a

synthetic dimension [14], which opens up a new direction
to extend the dimensionality with large number of sites and
is realized recently for neutral atoms by modulating the trap
potential [15]. Here, we propose and demonstrate a scheme
to implement synthetic dimensions and artificial magnetic
flux in ion trap using the laser-coupled internal and
motional degrees of freedom. Recently, synthetic dimen-
sions have also been achieved using microwave photons
with the help of a superconducting qubit [16]. However,
there the qubit is to intermediate the transition between
different microwave cavities and is not regarded as an
additional dimension, thus the qubit and n photon modes
give a total synthetic dimension of n − 1. In comparison, in
our scheme both spin and phonon states are regarded as
independent dimensions and we get nþ 1 synthetic dimen-
sions from a qubit and n phonon modes.
As one of the leading platforms for quantum information

processing and quantum simulation, ion trap naturally hosts
high-fidelity initialization, manipulation, and readout of
phonon states [17] with the help of ions’ internal levels
through laser-induced phonon sideband transitions and
spin-dependent forces. Quantum simulation of spin-
boson-coupled systems has been performed for quantum
Rabi model on a single trapped ion [18–20] and for
Hubbard-like models on up to tens of ions [21–25].
Recently, joint tomography of the spin and phonon states
has also been demonstrated [26]. These tools enable our
measurements of population and current on the synthetic
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lattice sites. Specifically, here we achieve a two-leg ladder
via the spin and motional states of a single trapped ion, and
simulate an anisotropic Harper-Hofstadter (HH) model [14]
with fully controllable magnetic flux. After verifying the
model by comparing with theoretical predictions under
representative parameters, we further observe the topologi-
cal effect of the chiral motion of a wave packet, and
demonstrate the quantum phase transition between the
Meissner phase and the vortex phase of the HH model
from adiabatically prepared ground states. Our work
showcases the ion trap as a powerful quantum simulator,
and may be extended to higher synthetic dimensions for
diverse topological effects.
Scheme.—Consider a two-leg ladder shown in Fig. 1

where the x direction is represented by the phonon number
jni and the y direction by the spin states j↑i and j↓i. Our
target is to simulate an anisotropic HH model with
Hamiltonian [14]

HHH ¼ Δa†a − Jyσx − Jx
�
aeiðφσzþθÞ þ a†e−iðφσzþθÞ�

¼ Δa†a − Jyσx − Jx cosφðaeiθ þ a†e−iθÞ
− iJx sinφσzðaeiθ − a†e−iθÞ; ð1Þ

where σx;y;z are Pauli operators on spin states and a (a†) is
the annihilation (creation) operator of the phonon. In the

Fock basis, we have a constant hopping Jy in the y direction
and a phonon-dependent hopping strength Jx

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
in the

x direction between phonon numbers n and nþ 1.
Furthermore, there is a spin-dependent Peierls phase [27]
of �φ in the hopping amplitude which generates a
magnetic flux of Φ ¼ 2φ in each unit cell, and a spin-
independent phase θ which corresponds to a shift in the
momentum space. Δ represents a linear potential along the
x direction and can be used to study Hall transport [14].
The Hamiltonian in Eq. (1) contains a detuning in the

phonon mode, a resonant driving on the spin transition, and
spin-independent and spin-dependent forces. The spin-
dependent force is widely used in ion trap, generated from
bichromatic laser driving [28]. In principle, the spin-
independent force can be created by an oscillating
electric field at the frequency of the phonon mode [17].
However, such a force, acting solely on the motional state,
is more difficult to control and calibrate than the
laser-induced one, therefore we choose the implement
the Hamiltonian in Eq. (1) by the spin-dependent
force via suitable unitary transform. Specifically, we con-
sider a unitary U ¼ Rxðπ=2Þ ⊗ DðJxe−iθ cosφ=ΔÞ, where
Rxðπ=2Þ is a rotation along σx by π=2, and DðαÞ≡
expðαa† − α�aÞ is the displacement operator. In the trans-
formed frame, the Hamiltonian H0 ¼ U†HHHU ¼ Δa†aþ
ðΩc=2Þσx − iðηΩs=2Þσyðaeiθ − a†e−iθÞ turns into a
familiar form in ion trap quantum simulation [18,19],
where we identify ηΩs ¼ 2Jx sinφ and Ωc ¼ −2Jy (see
Supplemental Material [29]). To simulate the dynamics of
an initial state jψi under HHH, we prepare U†jψi where the
displacement can be realized by a spin-dependent force
with a suitable initial spin state. After time evolution under
H0, we further need a unitary U on the final state, which
can be absorbed into the blue or red sideband evolution
when measuring the phonon state [26,33].
First we verify the successful simulation of HHH under

various parameters from an initial product state of the spin
and the phonon. Without a magnetic field [Fig. 2(a)], the
spin and the phonon states evolve separately even though

FIG. 1. Experimental scheme. (a) We use the spin and a phonon
mode of a trapped ion to simulate the two-leg ladder model. Two
counterpropagating laser beams are shined on the ion to drive
three pairs of Raman transitions near the carrier and the blue and
the red motional sidebands. (b) The simulated two-leg ladder
model. Its x direction is represented by the phonon number jni
and the y direction by the spin states j↑i and j↓i. The carrier
driving provides the coupling along the spin direction, while the
driving near the two motional sidebands generates a spin-
dependent force, which translates into the site-dependent cou-
pling along the phonon direction with an adjustable magnetic flux
in a suitable frame of reference.

FIG. 2. Comparison of experimental and theoretical dynamics
under various parameters for theHHHamiltonian in Eq. (1) from an
initial state j↓ijα ¼ 2i. We chooseΔ ¼ 2π × 2 kHz and θ ¼ π=2.
(a) Jx ¼ 2π × 4 kHz, Jy ¼ 2π × 3.6 kHz, and Φ ¼ 2φ ¼ 0.
(b) Jx ¼ 2π × 6 kHz, Φ ¼ 2φ ¼ π=2 and various Jy.
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the couplings in both x and y directions are on, thus we
observe a Rabi oscillation in the spin state. When a
magnetic flux Φ ¼ 2φ ¼ π=2 is turned on [Fig. 2(b)],
the population transfer from j↓i to j↑i slows down due to
the restriction of edge modes. Later we will see that the
weak and the strong Jy correspond to the vortex phase and
the Meissner phase, respectively. In all these situations, the
measured spin dynamics agree reasonably well with the
theoretical predictions, given that all these parameters are
calibrated in advance and that there is no fitting parameters
in the theoretical curves.
The topological property of the HH model can be

reflected from its chiral edge states [1–3]. A two-leg (or
few-leg) ladder is a minimal model to observe such chiral
edge modes [34–40] with its two energy bands showing
opposite chirality: In each band, particles on one leg tends
to move in one direction and those on the other leg tends to
move in the other direction. Such a chiral motion still
persists in the anisotropic HH model [14]. As we show in
Fig. 3, for an initial wave packet j↓ijα ¼ 2i on the lower
leg of the ladder, originally it stays on the lower leg and
moves to the left, and then transfers to the upper leg once it
hits the boundary at n ¼ 0. Finally the wave packet on the
upper leg moves to the right.
The chiral edge modes can be regarded as the

Meissner effect where the edge current screens out
the external magnetic field up to a critical value. As
the magnetic field increases, a quantum phase transition
occurs from the Meissner phase into a vortex phase [35,41].
This is most easily seen from an isotropic and homo-
geneous two-leg ladder HH model with Δ ¼ 0 and L → ∞

sites along the x direction. For simplicity, below we set the
global phase θ ¼ 0. Defining momentum basis jq;↑ð↓Þi≡P

n e
iqnjn;↑ð↓Þi= ffiffiffiffi

L
p

, where q ¼ 2πm=L (m ¼ −L=2;
−L=2þ 1;…; L=2 − 1), the Hamiltonian can be
expressed as H¼−2JxPq½jq;↑ihq;↑jcosðqþφÞþjq;↑i
hq;↓jcosðq−φÞ�−Jy

P
qðjq;↑ihq;↓jþH:c:Þ. We plot its

typical energy band structure in Fig. 4(a) for weak and
strong magnetic field at Jx ¼ Jy ¼ J. At weak magnetic
field (dashed curves), the lower band has a unique ground
state at q ¼ 0 as an equal superposition of all the sites. This
gives a chiral current jc ≡ i

P
nðjnþ 1;↑ihn;↑je−iφ −

jnþ 1;↓ihn;↓jeiφÞ þ H:c: increasing with the magnetic
field hjci ¼ 2 sinðφ=2Þ. On the other hand, at strong
magnetic field (solid curves), the lower band shows two
degenerate ground states close to q ¼ �φ. These momen-
tum states are out-of-phase with the definition of the chiral
current, thus a reduction in hjci as φ further increases. As
shown in Fig. 4(c), for the isotropic HH model (green solid
curve), sharp nonanalytical behavior in jc can be seen near
the critical magnetic flux φc.
To observe this phase transition, we adiabatically prepare

the ground state of Eq. (1) and measure its chiral current
(see Supplemental Material [29]). For any desired param-
eters, we start from Jx ¼ 0 such that the initial ground state
is given by the product state jþij0i of the spin and the
phonon modes when Jy > 0 and Δ > 0. Then we gradually
turn up Jx and expect the system to stay in the ground state
under slow quench. However, note that as we vary the
parameters, the unitary transform U also becomes time
dependent and will cause a correction term of −iU∂U†=∂t
in the effective Hamiltonian. In the adiabatic limit, this

FIG. 3. Chiral motion of an initial wave packet j↓ijα ¼ 2i under the HH model with Δ ¼ 2π × 2 kHz, Jx ¼ Jy ¼ 2π × 6 kHz,
Φ ¼ 2φ ¼ π=2, and θ ¼ π=2. (a)–(f) Time evolution of phonon population in the lower leg (j↓i, first column), the upper leg (j↑i,
second column) and their combination (third column). The experimental results (first row) agree well with the theoretical prediction
(second row). (g) Time evolution of average phonon number in the lower and upper legs. (h) Schematic dynamics of a wave packet
initially located on the lower leg centered around hni ¼ jαj2 ¼ 4. First it stays on the lower leg and moves to the left, then starts to
transfer to the upper leg at the boundary n ¼ 0, and finally moves to the right on the upper leg.
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correction term will be small, but even for a finite quench
rate, its effect can be cancelled by suitable modification in
the quench parameters αðtÞ (see Supplemental Material
[29]). In Fig. 4(c) we show the experimental data as the
black circles and the theoretical results for an anisotropic
HH model as the red dashed curve. Similar to the isotropic
HH model (green solid curve), we observe an initial linear
increase in jc vs φ, a peak near the expected critical
magnetic flux, and a decrease in jc as φ further increases.
Here the initial slope of the curve is higher than the
isotropic model because of the stronger coupling in
the x direction by

ffiffiffi
n

p
and a corresponding modification

in the definition of the chiral current jc ≡ iσza†e−iφσz [14].
Also note that the peak in the transition signal is broader
than the ideal isotropic model. This can be explained by the
finite size effect of a bounded number of phonons as we
describe below.
In order to cancel the spin-independent force in the

Hamiltonian [Eq. (1)], here we choose a nonzero detuning
Δ of the phonon mode. Furthermore, to adiabatically

prepare the ground state, we require Δ > 0. This corre-
sponds to a constant force along the simulated two-leg
ladder, and helps to keep the phonon number bounded, both
in the ground state and in the dynamics [14]. Strictly
speaking, an equilibrium phase cannot be defined under
such a constant force, not to mention a phase transition.
However, if we gradually reduce Δ and extrapolate to the
limit Δ → 0, we can still expect a nonanalytical behavior in
analogue to the thermodynamic limit in an ordinary phase
transition. As shown in Fig. 4(d), when we decreaseΔ from
2π × 3 to 2π × 2 kHz, the curve for the chiral current does
get sharper. Also note that the transition point is shifting to
smaller φ as Δ decreases. This is because when Δ
decreases, the average phonon number increases so that
effectively the coupling Jx also increases with

ffiffiffi
n

p
. As we

shown in Supplemental Material [29], with a suitable
rescaling in the parameter Jy and the observable jc, these
curves will converge to a nonanalytical curve in the limit
Δ → 0, thus proving a quantum phase transition.
Another way to probe the phase transition, which is used

in previous experiments without the freedom to arbitrarily
control the magnetic flux, is to scan the ratio Jy=Jx under a
fixed Φ ¼ 2φ ¼ π=2. Again we can understand this phase
transition from the energy band structure of an isotropic
HH model at Δ ¼ 0. As shown in Fig. 4(b), similar to the
previous case, when Jy=Jx ≫ 1 (dashed curves), we get the
Meissner phase with a unique ground state at q ¼ 0, so that
the chiral current saturates at hjci ¼ 2 sinðφ=2Þ. In com-
parison, when Jy=Jx ≪ 1 (solid curves), we get the vortex
phase with two degenerate ground states near q ¼ �φ,
giving vanishing chiral current. However, if we follow a
similar procedure to adiabatically prepare the ground state
and measure the chiral current for various Jy=Jx, as shown
in Supplemental Material [29], although the experimental
data still agrees with the theoretical prediction for the
anisotropic HH model, the transition signal near the critical
ratio Jy=Jx is not visible, and finally for sufficiently large
Jy=Jx, the chiral current will saturates at Jx=Δ. Therefore
we conclude that for this anisotropic model with increasing
hopping proportional to

ffiffiffi
n

p
, scanning the magnetic flux is

the preferable way to probe this quantum phase transition.
Discussion.—Our work can be readily generalized to

four dimensions with a single spin and the three spatial
oscillation modes. Through laser-induced spin-dependent
forces on these three modes, magnetic flux between these
motional directions and the spin direction can be freely
controlled. On the other hand, to engineer flux between the
motional directions is more complicated and may require
nonlinear interactions between these modes. It is also
possible to generalize the synthetic dimension to multiple
ions as we discuss in Supplemental Material [29].
Also note that, when studying the quantum phase

transition, we take the limit Δ → 0 in a similar way as
the previously studied quantum phase transition in the
quantum Rabi model without a thermodynamic limit,

FIG. 4. Quantum phase transition in the HH model. (a) Energy
band structure for an isotropic HH model at Δ ¼ 0 and Jx ¼
Jy ¼ J under small (φ ¼ π=8, dashed curves, Meissner phase) or
large (φ ¼ 3π=8, solid curves, vortex phase) magnetic flux,
respectively. The color represents the spin component hσzi of
the eigenstates. (b) Energy band structure for an isotropic HH
model at Δ ¼ 0 and φ ¼ π=4 under large (Jx ¼ 0.1J, Jy ¼ J,
dashed curves, Meissner phase) or small (Jx ¼ 0.5J, Jy ¼ 0.1J,
solid curves, vortex phase) coupling ratio, respectively. (c) Chiral
current for the adiabatically prepared ground state at Δ ¼ 2π × 3,
Jx ¼ 2π × 6, and Jy ¼ 2π × 9 kHz (black circles for experiment
and blue dash-dotted curve for theory), the ideal ground state for
the anisotropic HH model (red dashed curve) and the isotropic
HHmodel (green solid curve) vs magnetic flux φ. (d) Similar plot
as (c) under various detuning Δ. Dots represent experimental data
and curves represent ideal ground states for the anisotropic HH
model.
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where the frequency ratio between the spin and the bosonic
modes is used for finite size scaling instead of the particle
number for an ordinary phase transition [19,42]. On the
other hand, in this work there is a clear correspondence
between the detuning Δ and the number of sites in the
anisotropic HH model. Therefore, our work can make a
bridge between these two types of phase transitions and can
help deepen the understanding of their physical essence.
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