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It is widely accepted that local subsystems in isolated integrable quantum systems equilibrate to
generalized Gibbs ensembles. Here, we identify a particular class of initial states in interacting integrable
models that evade canonical generalized thermalization. Particularly, we demonstrate that in the easy-axis
regime of the quantum XXZ chain, pure nonequilibrium initial states that lack magnetic fluctuations
instead locally relax to squeezed generalized Gibbs ensembles governed by nonlocal equilibrium
Hamiltonians, representing exotic equilibrium states with subextensive charge fluctuations that violate
the self-affine scaling. At the isotropic point, we find exceptional behavior and explicit dependence on the
initial state. Particularly, we find that relaxation from the Néel state is governed by extensive fluctuations
and a superdiffusive dynamical exponent compatible with the Kardar-Parisi-Zhang universality. On the
other hand, there are other nonfluctuating initial states that display diffusive scaling, e.g., a product state of
spin singlets. Our predictions provide examples of anomalous quantum transport and fluctuations in strictly
quantum states which can be directly tested in state-of-the-art cold atomic experimental settings.
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Introduction.—The study of nonequilibrium dynamical
properties in isolated quantummany-body systems has been
at the forefront of theoretical and experimental research in
the past decade [1–25]. In particular, the study of thermal-
ization is primarily concernedwith the steady-state values of
local observables following a quantum quench from a pure
initial state. Such protocols have provided a versatile and
fruitful tool for understanding the key mechanisms leading
to thermalization and quantum scrambling. Despite the
global state remaining pure at all times, any large subsystem
typically evolves at late times towards an ensemble that
maximizes entropy, subject to the constraints of (quasi)local
conserved quantities. This paradigm has been examined in a
rich variety of systems, including generic chaotic models
and free or interacting integrable models. Concurrently,
there have been important developments in understanding
the eigenstate thermalization hypothesis [3,7,14,26] and its
generalization to the integrable cases [23,27,28]. Local, but
large, subsystems of size l are said to thermalize whenever
the reduced densitymatrix is described by a canonical Gibbs
ensemble or, in the case of integrable models, the general-
ized Gibbs ensemble [6,13,29]. Such canonical ensembles
possess by definition extensive and strictly positive fluctua-
tions (static susceptibilities) of (quasi)local charges fQig
within the subsystem of size l, i.e., the covariance matrix
Cij ¼ hQiQjic=l is positive definite in the l → ∞ limit.
In this Letter, we revisit the problem of thermalization in

integrable models. We specifically consider interacting
quantum spin chains with a global Uð1Þ charge Q,

e.g. magnetization in spin chains or electron charge in
interacting fermions.We confine our study to quenches from
initial states within a specific charge sector by considering
superpositions of pure state with the same value of Q. In
contrast with a widespread belief, we find that the reduced
density matrix emerging at late times is not a faithful
canonical GGE, and we dub such ensembles as squeezed
GGEs (SGGEs). Akin to canonical ensembles, GGEs are
generically characterized by charge fluctuations (covarian-
ces) that scale extensively with system size, yielding finite
charge susceptibilities (see, for example, [30]). Squeezed
GGEs instead possess subextensive charge fluctuations
manifested by divergent U(1) chemical potentials and
vanishing charge susceptibility. Similarly to zero-entropy
ensembles, SGGEs can thus represent extremal GGEs with
exceptional properties.
To substantiate our claims, we consider the anisotropic

(XXZ) Heisenberg chain,

H ¼
X
j

½SxjSxjþ1 þ SyjS
y
jþ1 þ ΔSzjS

z
jþ1�; ð1Þ

where Sαj are the spin-1=2 generators and Δ is the
interaction anisotropy. We shall mostly be interested in
the Δ > 1 regime, where we establish that initial states
without (global) magnetic fluctuations locally equilibrate to
states ρl with static spin fluctuations scaling subextensively
with the subsystem size. This shows that such ensembles
cannot be captured by canonical GGEs generated by
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quasilocal effective equilibrium Hamiltonians, which is
supported by the observation that the rescaled (Hilbert–
Schmidt) norm of an effective Hamiltonian k log ϱlk=l
divergeswith l (see Ref. [31]). Such anomalous behavior is
no longer present in the gapless regime Δ < 1, where the
spectrum of quasiparticles comprises only finitely many
magnon species, consistently with thermalization to
canonical GGEs. Curiously, at the isotropic point Δ ¼ 1
we encounter a qualitatively different behavior. While there
exist initial states, e.g., the antiferromagnetic Néel state,
that comply with canonical GGE description, exhibiting
finite magnetic susceptibility and superdiffusive spin trans-
port, there are other nonfluctuating pure states (e.g., the
product state of spin singlets) that reveal very distinct,
unorthodox properties.
Given a pure initial state jΨi, we probe magnetic fluctu-

ations within finite sublattices Λl of size l,Ql¼
P

j∈Λl
Szj,

and investigate the dynamical scaling properties of the local
second moment

W2ðl; tÞ≡ hΨðtÞjQ2
ljΨðtÞi: ð2Þ

Drawing an analogy with the interface roughness in sto-
chastic models of interface growth, we can, in general,
expectWðl; tÞ to exhibit a (self-affine) Family-Vicsek (FV)
scale-invariant law [32–37],

Wðl; tÞ ∼ lζΦðt=lzÞ; ð3Þ

with ΦðyÞ ∼ yβ for y ≪ 1 and ΦðyÞ → 1 for y ≫ 1, rough-
ness (Hurst) exponent ζ, and growth exponent β ¼ ζ=z.
While in the case of, e.g., Néel state we confirm the above
scaling, both at the isotropic point, with Kardar-Parisi-
Zhang (KPZ) exponents ζ ¼ 1=2, z ¼ 3=2 [38], and for
Δ < 1 (with ballistic exponents ζ ¼ 1=2, z ¼ 1), we
observe violation in the diffusive regime (z ¼ 2), where
W2ðl; tÞ scales subextensively with l, with an estimated
(fitted) exponent is ζ ≈ 0.22 < 1=2 at Δ ¼ 3, see Fig. 1.
While at present we have no theory to predict the values of
roughness exponents ζ ≤ 1=2, we have verified that they are
dependent on anisotropy and, possibly, also on the type of
initial state, see additional plots in [31].
GGEs for interacting integrable systems.—In the scope

of the standard quantum quench protocol, we consider
integrable interacting quantum spin chains with an internal
(charge) degree of freedom. For simplicity, we assume the
system possesses a single U(1) charge (i.e., no nesting) and
consider only a class of product pure initial states jΨi of the
form jΨi ¼ jψi⊗n, with system length L and n ¼ L=b∈N,
where jψi is a “block state” involving b adjacent lattice sites.
In the thermodynamic limit, the main object of interest is the
reduced density matrix on a sublattice Λl of size l,
ϱlðtÞ ¼ limL→∞TrΛ̄l

jΨðtÞihΨðtÞj, where the trace is over
the complementary lattice Λ̄l. At late times, ϱlðtÞ is expected

to approach a GGE, liml→∞limt→∞ϱlðtÞ ¼ ϱGGE ¼
Z−1

L exp ð−P
i λiIi þ hQÞ involving the global U(1) charge

Q and all the (quasi)local conserved quantities Ii of themodel
[39,40] (coupling to chemical potentials βi, cf. [31] for a
precise definition). Generalized Gibbs ensembles admit
several equivalent descriptions [41,42]. One can, for instance,
employ various state functions of the thermodynamic Bethe
ansatz (TBA) enumerated by (integer) quantum numbers s,
e.g., the macrostate densities ρsðuÞ of quasiparticles with
(bare) momenta ksðuÞ with rapidity u, or Fermi occupation
(filling) functions nsðuÞ ¼ ρsðuÞ=ρtots ðuÞ, where the total
density of states ρtots ðuÞ are related to dressed momenta ps
via ρtots ðuÞ ¼ p0

sðuÞ=2π. Crucially, the coarse-grained infor-
mation stored in state functions ρsðuÞ is sufficient to uniquely
fix all local correlation functions in a GGE [43,44]. There
exist a class of initial states with b ¼ 2, [45,46], where
analytic closed-form computation of the ns is possible. The
first successful demonstration of this program has been
achieved in Ref. [47] (see also [41,48–52]), however,
Ref. [47] inappropriately identifies some of the ensembles
as canonical GGE, while, as we clarify in turn, the nonca-
nonical character of such states is revealed by thevanishing of
static spin susceptibility and the finite occupations of giant
bound states.
To provide a few instructive examples, we subsequently

focus on the Δ ≥ 1 regime of the Hamiltonian (1), where the
excitation spectrum (above the ferromagnetic vacuum) com-
prises an infinite tower of magnon bound states with s ¼
1; 2;… quanta of magnetization. The density of free energy
f ¼ −limL→∞L−1 log ZL in canonicalGGEs can be split as
f ¼ h=2 − f, with [31], f≡ −

P∞
s¼1

R
duk0sðuÞ logð1−

nsðuÞÞ=2π. Noticing that the kernel k0sðuÞ in the integrand
tends to a constant at large s, the convergence of the infinite
sum is fully predicated on the large-s behavior of ns.
Squeezed GGEs.—We consider quantum quenches from a

class of pure initial states jΨi with vanishing charge cumu-
lants, cðnÞ ¼ðd=dλÞnFQðλÞjλ¼0¼0, with the scaled cumulant
generating functionFQðλÞ≡ limL→∞L−1 log hΨjeλQjΨi. In
spite of cðnÞ remaining globally conserved at all times,
any subsystem of length l will, in general, possess positive
time-dependent cumulants WðnÞðl; tÞ ¼ hΨðtÞjQn

ljΨðtÞi.
Accordingly, one expects the emergent local equilibrium
state to exhibit strictly positive cumulants, namely, χðnÞ ¼
liml→∞limt→∞l−1WðnÞðl; tÞ > 0. Surprisingly, however,
this is not what happens in the easy axis regime Δ > 1. As
we clarify in the following, there W2ðl; tÞ behaves anoma-
lously, scaling subextensively with l.
We now discuss how such a dynamical suppression of

magnetic fluctuations in local equilibrium states is subtly
related to “freezing” of the mode occupations ns; instead of
diminishing with increasing s, ns are found to converge
toward nontrivial limiting functions (attractors) depending
on whether s is even or odd, see, Fig. 2. As a corollary, the
infinite sum over the quasiparticle spectrum becomes
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divergent, f → ∞. The physical density of free energy f
nonetheless remains finite. Indeed, infinitely many con-
tributions can be resumed using certain kernel identities
(cf. [31] for details), signifying that f is manifestly finite in
both canonical GGEs and squeezed ensembles.
Importantly, however, a divergent f implies h ¼ ∞.
There are several key remarks in order: (i) although the
employed TBA formulas are strictly applicable only for
canonical GGEs [41,42], one can always regularize a
divergent f by introducing an appropriate twist (say τ) that
renders f and hence also χðnÞ finite, removing the twist only
at the end; (ii) we emphasize that hQi ¼ 0 does not
generally imply h ¼ 0 in a GGE, cf. [31]. In fact, for
Δ > 1 and τ > 0 we find instead fðτÞ < ∞, but with fðτÞ
and h ¼ hðτÞ both diverging as τ → 0, see Ref. [31];
curiously, such a divergence is also exhibited by the
Lagrange multiplier in the quench action [53,54]. (iii) the
peculiar freezing phenomenon cannot take place in inte-
grable systems with a finite number of bound states since f
cannot grow unboundedly. Hence, freezing is not present in
the gapless regime with jΔj < 1 and, for the same reason,
this effect is genuinely due to attractive interaction (see also
[31]); (iv) our conclusions apply likewise to nonfluctuating
magnetized states with cð1Þ ≠ 0 upon subtracting the first
moment in Eq. (2), Ql → Ql − hQli.
Proceeding now to explicit examples, we focus our

analysis on simple initial valence-bond product states of
two-site (b ¼ 2) blocks [46]. We consider specifically the
Néel state and the “dimer” state,

jΨNi ¼ j↑↓i⊗L=2; jΨDi ¼
�j↑↓i − j↓↑iffiffiffi

2
p

�
⊗L=2

; ð4Þ

allowing for explicit analytic computation of state functions
in a recursive manner [31]. Our main conclusions never-
theless hold very generally, i.e., are valid for other initial
product states that only involve eigenstates with the same
value of Q. We have verified that the observed anomalous
relaxation is not an artifact of coherent pair production
associated with integrable quenches [55,56].
Static spin susceptibility.—Dynamical suppression of

magnetic fluctuations in SGGEs implies a vanishing static
spin susceptibility, namely, χ ¼ 0, given by the exact
formula [57]

χ ¼
X
s≥1

Z
duχsðuÞ½mdr

s ðuÞ�2; ð5Þ

where χsðuÞ≡ ρsðuÞ½1 − nsðuÞ� are the single-mode sus-
ceptibilities and mdr

s denote the dressed magnetizations of
quasiparticles (computed by solving the dressing equations
[31]). Despite mdr

s all vanish upon approaching an unmag-
netized state, q≡ liml→∞hQli=l ¼ 0, absence of uniform
convergence requires regularization when evaluating Eq. (5).
In order to reinstate finite magnetization density and finite
fluctuations we employ twisted initial states. For instance,
we use the twisted Néel state jΨNðτÞi ¼ jψNðτÞi⊗L=2, where
jφNðτÞi≃

P
σ;σ0∈f↑;↓gφσ;σ0 jσ;σ0i, with amplitudes φ↑↑ðτÞ ¼

−φ−1
↓↓ðτÞ ¼ eτ, φ↑↓ðτÞ ¼ −φ−1

↓↑ðτÞ ¼ cot ðτ=2Þ depending
on “twist” parameter τ > 0. Such twisting in particular
ensures that the mode occupation functions experience ex-
ponential decay for large s, while mdr

s ∼ qs2 for small or
intermediate s, mirroring thermal states. Unlike in thermal
(Gibbs) states, where the density decay algebraically as
ρsðuÞ ∼ s−3, which gives a finite limit for the susceptibility
limq→0χ > 0, SGGEs (in Δ > 1 regime) instead generically
exhibit exponential falloff ρsðuÞ ∼ e−ξs. Consequently, the
zero-twist limit can be interchanged with the infinite sum
over s, yielding χ ¼ 0. Such exponential suppression of the
densities is not incompatible with the observed freezing of
the ns at large s since the effective Brillouin zone [i.e., the
Jacobian k0sðuÞ] available for quasiparticles with large s
shrinks exponentially in SGGEs. Indeed, in this limit only
the giant quasiparticles that carry finite effective magneti-
zation, telling that they become effectively pinned locally in
space and consequently preclude the distribution of magnetic
fluctuations through the system.
Spin diffusion.—We now examine the diffusion constant

D, using the following exact mode resolution [58–60]

D ¼
X
s≥1

Z
duχsðuÞjveffs ðuÞjμ2s ; ð6Þ

with effective velocities veffs ðuÞ (computed from the dressed
dispersion relations, see Ref. [31]) and magnetic moments

(a) (b)

FIG. 1. Top: nonequilibrium time evolution from an initial
state. Spatial fluctuations of local charge Ql produced during the
time evolution in the subsystem of length l grow subextensively
with for large l. Bottom: temporal and spatial scaling of magnetic
fluctuations after the quench from the Néel state in the Heisen-
berg XXZ chain with Δ ¼ 3: (a) double log-plot of W2ðl; tÞ as a
function of time for different l∈ ½4; 40� (increasing from light to
dark); (b) double log-plot of W2ðl; tÞ as function of l for
different times t∈ ½5; 16� with δt ¼ 0.5 (from light to dark), with
the asymptotic scaling W2ðl; tÞ ∼ l2ζ and fitted exponent
2ζ ≈ 0.43. Analogous results for the dimer initial state are
reported in [31].
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μs ≡ ∂qmdr
s jq¼0. Using the general scaling μs ∼ s2, along-

side jveffs j ∼ e−κs for Δ > 1, we readily conclude that
D > 0 in SGGEs. However, as we explain shortly, we
find a clear signature of anomalous diffusive behavior. We
also note that dc spin conductivity σ vanishes identically,
that is σ ¼ Dχ ¼ 0.
Numerical simulations.—To confirm our theoretical

predictions, and to additionally infer the scaling properties
of finite subsystems, we carry out numerical simulations
using the matrix product states (MPS) with the iTensor
library [61]. We simulate the time evolution of chains of
length L ¼ 100 up to maximal times t ≈ 15 (using the
maximal bond dimension of 1024). We compute the time
dependence of charge variance in a local subsystem
W2ðl; tÞ by time-evolving the initial state jΨi with
TEBD [62], for subsystems of length l ranging from 2
to 40. For both Néel (see Fig. 1) and dimer states (see
Ref. [31]), we observe diffusive temporal growth
W2ðl; tÞ ∼ t1=2 followed by saturation to a value ∼l2ζ

with the approximate fitted exponent ζ ≈ 1=4. This value
would only be consistent with the FV scaling hypothesis
(3) in the case of ballistic dynamical exponent z ¼ 1, but
not with z ¼ 2 associated with diffusive processes. This
leads us to rule out the self-affine structure of the magnetic
fluctuations in SGGEs, implying the absence of normal
spin diffusion. Lastly, we also verify that the norm of the
equilibrium Hamiltonian log ϱl grows superextensively
[31], contrasting the extensive behavior of (quasi)local
charges in canonical GGEs (as found, e.g., in the XXZ
Hamiltonian with Δ ¼ 0.5).
Isotropic chain and KPZ fluctuations.—The isotropic

limit Δ → 1 requires special attention due to an enhanced
non-Abelian symmetry [63]. It is by now well established

that in thermal equilibrium with q ¼ 0 magnetization
exhibits anomalous transport characterized by a superdiffu-
sive dynamical exponent z ¼ 3=2 associated with the KPZ
physics [59,60,64–68]. On the other hand, hydrodynamic
relaxation from pure states is much less explored, and our
work partially fills this void. Indeed, it turns out, somewhat
surprisingly, that in the case of isotropic interaction the non-
fluctuating initial states can exhibit different qualitative
behavior. For example, the Néel state relaxes to a GGE
with regular (i.e., decaying) occupation functions, enabling
restoration of fluctuations with a finite χ ≈ 0.6. In contrast,
the dimer state again yields χ ¼ 0. Using the exact result
for nDs ðuÞ, the divergence of f ¼ P

s≥1 fs → ∞ follows
rigorously from the large-s behavior fs ¼ 3 logðsÞ−
4 log ðsþ 1Þ þ log ðsþ 2Þ ∼ s−1, causing a logarithmic
divergence of f with the cutoff smax. In the case of Néel
state, the spin diffusion constant is found to diverge; the
terms in Eq. (6) tend to constant at large s, mirroring the
thermal states (exhibiting χsðuÞ ∼ s−3 decay, and jveffs ðuÞj ∼
s−1 (see the additional numerical data in [31]), stipulated by
the “superuniversality” of spin superdiffusion [69] with dy-
namical exponent z ¼ 3=2). As shown in Fig. 3, spin fluc-
tuations grow as ∼t2=3, i.e., β ¼ 1=3. In the dimer quench,
however, the equilibrium state reveals distinctly non-
thermal features despite preservation of the SU(2) symmetry
(q ¼ 0), with scaling χsðuÞ ∼ s−5 and jveffs ðuÞj ∼ s0, indi-
cating a logarithmic divergence of D with smax. Together
with the vanishing of the spin susceptibility, this implies
finite spin conductivity σ ¼ χD, i.e., normal spin transport.
These findings are well supported by our numerical

simulations. In the Néel quench, the data are well com-
patible with the anticipated scaling form with ζ ¼ 1=2 and
β ¼ 1=3,

W2ðl; tÞ ∼ lΦisoðt=l3=2Þ; ð7Þ

FIG. 2. Freezing of the quasiparticle mode occupations nsðuÞ
in the SGGE emerging from the Néel quench in the XXZ chain
with Δ ¼ 2, showing the Brillouin zones with u∈ ½−π=2; π=2�
(delimited by black vertical lines) for the few initial s, and
compared to canonical behavior in GGEs [shown for the
twisted Néel state jΨNðτÞi] and thermal equilibrium values
in the high-temperature limit.

(a) (b)

FIG. 3. Local magnetic fluctuations W2ðl; tÞ in the isotropic
Heisenberg chain (Δ ¼ 1): double log-plot of W2ðl; tÞ as a
function of t for l∈ ½2; 29� for (a) the Néel (multiplied by 10 to
improve readability) and dimer initial states, compared to t2β

asymptotics, with growth exponents β ¼ 1=3 and β ¼ 1=4,
respectively. (b) Double log-plot of W2ðl; tÞ as a function of
l for t∈ ½10; 38�with Δt ¼ 1.0 for the Néel (red curves) and l for
t∈ ½5; 16� with Δt ¼ 0.5 for dimer (blue curves) states, compared
to the linear slope in l (Néel) and a subextensive scaling l2ζ with
approximate (fitted) exponent ζ ≈ 0.38 (dimer).
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consistently χ > 0 and singular spin diffusion constant in
the associated GGE. In the dimer case, we observe (on the
accessible times) an algebraic growth W2ðl; tÞ ∼ t2β with
β ¼ 1=4, whereas the exponent ζ appears to be slightly
smaller than the extensive value ζ ¼ 1=2 (compatibly with
the theoretically predicted freezing of ns).
Conclusions.—By considering a class of nonfluctuating

initial product states, we demonstrated that interacting
integrable systems hosting infinitely many bound states
can sometimes evade thermalization to canonical GGEs.
Here we discuss quench scenarios in which local subsys-
tems equilibrate to unorthodox states called squeezed
GGEs, featuring subextensive magnetic fluctuations [sig-
naled by a divergent U(1) chemical potential]. In addition,
we find the approach to equilibrium violates the Family-
Vicsek scaling hypothesis. Another distinguished property
of SGGEs are non-decaying, so-called “frozen,” mode
occupations of giant quasiparticles, causing an emergent
large-scale semi-classical description [70] to break down.
This phenomenon is thus a genuine effect of interaction and
cannot take place in free systems.
We are hopeful that the state-of-the-art quantum simu-

lators [19,65,71] and modern quantum processors [72,73]
can provide a test bed and an ideal opportunity to verify our
predictions, as they do not suffer from the rapid growth of
entanglement generated by the quantum quench. We
emphasize that unlike the recently studied quantum trans-
port in canonical classical ensembles [65], the outlined
phenomena are genuine properties of quantum states with
no equivalent in classical spin systems.
Several recent studies reported anomalous behavior of

macroscopic fluctuating quantities, such as the full count-
ing statistics (FCS), Rényi entropy [74,75]), in quantum
and classical Heisenberg chains [67,76,77] and related
models [78–80] featuring fragmentation. It currently
remains unclear whether anomalous FCS bears any con-
nection to the observed anomalous dynamic roughening
which, according to our simulations, appears to be inti-
mately tied to integrability. Upon breaking integrability,
generic Hamiltonians with equidistant energy levels in the
limit Δ → ∞ involve quasilocal quantities conserved up to
exponential time ∼eκΔ for any Δ > 1, being a corollary of
Ref. [81]. In this view, integrability guarantees the exact
conservation of magnetic fluctuations for large subsystems
l ≫ 1 at arbitrary times. We currently lack any deeper
mathematical insight behind this mechanism and how
(weak) integrability-breaking perturbations influence the
picture, which we plan to investigate in future works.
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