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Very recently, a fundamental observable has been introduced and analyzed to quantify the exploration of
random walks: the time τk required for a random walk to find a site that it never visited previously, when the
walk has already visited k distinct sites. Here, we tackle the natural issue of the statistics ofMn, the longest
duration out of τ0;…; τn−1. This problem belongs to the active field of extreme value statistics, with the
difficulty that the random variables τk are both correlated and nonidentically distributed. Beyond this
fundamental aspect, we show that the asymptotic determination of the statistics of Mn finds explicit
applications in foraging theory and allows us to solve the open d-dimensional starving random walk
problem, in which each site of a lattice initially contains one food unit, consumed upon visit by the random
walker, which can travel S steps without food before starving. Processes of diverse nature, including
regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, share common
properties within the same universality classes.
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The territory covered by random walks (RWs) consti-
tutes a fundamental property with significant implications
in quantifying the efficiency of diverse stochastic explora-
tion processes, ranging from animal foraging behaviors [1]
to the trapping of diffusing molecules [2]. Usually, this
explored territory is quantified by the number NðtÞ of
distinct sites visited at time t [3]. Its average, variance and,
in some cases, full distribution have been determined
analytically [4–7]. However, since NðtÞ is a cumulative
quantity, it does not describe the detailed dynamics of the
exploration process. In particular, it does not differentiate
between trajectories in which new sites are discovered at an
almost regular rate and those in which they are essentially
found toward the end of exploration, corresponding to long
periods of time with no new sites discovered.
Very recently, as a first step to account for this disparity

between random trajectories, another fundamental quantity
was introduced [8,9]: the time τk required for the RW to
find a site that it never visited previously when k distinct
sites have already been visited; see Fig. 1. These random
variables are indeed very useful because they encompass
the full dynamics of the visitation statistics [8–10]. The
knowledge of the statistics of a given τk variable is,
however, insufficient to characterize the long periods of
timewith no new sites discovered, which can deeply impact
the exploration process [see Fig. 1(a)].
In this Letter, we provide a quantitative characterization

of these long time periods by determining the asymptotic
statistics of the maximum Mn of the τk, Mn ¼
maxðτ0;…; τn−1Þ [11]. This fundamental question belongs
to the domain of extreme value statistics, which has
attracted considerable attention in recent years due to its
connection with the statistics of extreme events [12–15].

Applications are found in fields as diverse as disordered
systems [16,17], random matrices [18,19], and search
algorithms [20–22]. Here, the technical difficulty is that
the territory visited by the RW is incessantly updated. As a
result, the random variables τk are both correlated and
nonidentically distributed. Importantly, these characteris-
tics are not given a priori but are generated by the RW
itself.

FIG. 1. Inter-visit times. (a) The inter-visit times fτkg (hori-
zontal steps), defined as the time intervals between increments of
the number NðtÞ of distinct sites visited, control the exploration
process. After visiting NðtÞ ¼ 1000 sites the discovery of the
1001th new site can be either “short” (green arrow) or “long” (red
arrow). Here, we determine the statistics of the maximum Mn of
fτkgk<n. The starving RW model. (b) Each site of a lattice
initially contains one food unit, consumed upon visit by the RW,
which can travel S steps without food before starving. Two
sample trajectories (green and red) associated with the evolution
scenarios of NðtÞ in (a) are displayed. A forager (yellow) has
eaten NðtÞ ¼ 1000 food units (the domain depleted of food is
black, and S ¼ 50). Following the green trajectory, it finds
rapidly a new food unit (green square). On the red trajectory,
it fails to find food before starving (at red cross).
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Beyond this theoretical aspect, the determination of the
statistics of Mn finds explicit applications in foraging
theory, particularly in the context of the starving RW
model [23–27], which describes depletion-controlled
starvation of a RW forager. In the original version of this
model [24], the RW survives only if the time elapsed until a
new food-containing site is visited is less than an intrinsic
metabolic time S [see Fig. 1(b)]. Such a situation is
commonly encountered at various scales [28], ranging
from microscopic organisms, such as bacteria [29], to
larger creatures like insects, foraging mammals [30], and
robots [31]. So far, the analytical results on starving RWs
have essentially been limited to one dimension (infinite
dimension, corresponding to a mean-field solution), where
it was found that (i) the mean number hNSi of units of food
collected at starvation is proportional to S1=2 (exponential
in S), (ii) the mean lifetime hTSi is proportional to S
(exponential in S), and (iii) the distributions of these two
observables admit a single-parameter scaling. Since the
original model [24], several lines of extension have been
considered, including resource renewal [32], long-range
food detection [33,34], penalties on long moves [35],
and switching on several modes of motion [36]. The
only studies in higher dimensions concern the mean-field
approach mentioned above [24,25], numerical simulations
[33,34], and a scaling result on the mean lifetime hTSi ∝ S2

in the particular case of the 2D situation [9].
Here, we provide analytical results for the d-dimensional

starving nearest-neighbor RW model, which constitutes an
open problem. Our starting point is the observation that the
knowledge of the statistics of the maximum Mn is a key
step to describe the dynamics of a starving RW. Indeed, a
starving RW is still alive after n units of food have been
collected if (and only if) Mn < S. In this Letter, we derive
analytically the long-time asymptotic distribution of, first,
Mn, and, second, key observables pertaining to starving
RWs: the lifetime TS, the number NS of units of food
collected when starvation occurs, and the position R⃗S of the
walker when it starves. A wide range of processes,
including d-dimensional regular diffusion, anomalous dif-
fusion, and diffusion in disordered media and fractals, fall
into the same universality classes.
Maximum of the inter-visit times.—We consider the

general situation of a discrete-time symmetric Markovian
RWon a lattice of fractal dimension df (df being equal to d
in the particular case of a d-dimensional Euclidean lattice).
The RW dynamics is characterized by the walk dimension
dw given by the typical displacement rðtÞ ∝ t1=dw after t
steps. Recurrent (shown [4,37] to be obtained for
μ≡ df=dw < 1) and marginal (μ ¼ 1) RWs visit any site
with probability one, whereas transient (μ > 1) RWs have a
finite probability not to visit it. We define by τk the time
elapsed between the visits to the kth and the (kþ 1)st
distinct sites [9,24] and by Mn the maximum of the inter-
visit times τk, Mn ¼ maxðτ0;…; τn−1Þ. We report here that

the rescaled random variable,

xn ¼
(
Mn=hMni μ ≤ 1

ðMn − hMniÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMnÞ

p
μ > 1;

ð1Þ

where the scalings with n of the averages and standard
deviations of Mn are given by

hMni ∝

8>><
>>:

n1=μ μ < 1ffiffiffi
n

p
μ ¼ 1

ðln nÞ1=μþ1 μ > 1;

ð2Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMnÞ

p
∝

8>><
>>:

n1=μ μ < 1ffiffiffi
n

p
μ ¼ 1

ðln nÞ1=μ μ > 1

ð3Þ

is asymptotically (n → ∞) distributed according to a
cumulative distribution function (CDF) ΞμðxÞ. Even if
process dependent, ΞμðxÞ displays the following universal
asymptotic behaviors, depending on the nature of explora-
tion, recurrent, marginal, or transient.
For recurrent RWs (μ < 1),

− lnΞμðxÞ ∝
(
x−μ for x ≪ 1

E1ðAxÞ ∝ e−Ax=x for x ≫ 1;
ð4Þ

where E1 is the exponential integral function and A is a
process-dependent constant.
For marginal RWs (μ ¼ 1), the distribution obeys (up to

log corrections)

− lnΞ1ðxÞ ∝
(
x−2 for x ≪ 1

e−Bx
1=2

for x ≫ 1;
ð5Þ

where B is a process-dependent constant.
For transient RWs, ΞμðxÞ does not depend on μ and is

given by the celebrated Gumbel distribution [14],

− lnΞ∞ðxÞ ¼ exp½−πx=
ffiffiffi
6

p
− γE�; ð6Þ

where γE is the Euler constant.
Striking qualitative differences between recurrent and

transient RWs emerge: while for recurrent and marginal
RWs the standard deviation of Mn is always comparable to
its mean value, this is not the case for transient RWs for
which the standard deviation of Mn is negligible in
comparison to its mean. As a consequence, Mn becomes
asymptotically deterministic in the latter case. Besides the
average and variance, the asymptotic distribution of the
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rescaled maximum in the recurrent and marginal cases is
very different from the usual Gumbel distribution for
random variables with stretched exponential tails distribu-
tion, as can be seen by comparing Eqs. (4) and (5) to
Eq. (6). As shown below, this is the signature of strong
aging effects for μ ≤ 1.
We now sketch the main steps involved in obtaining

these results [see Supplemental Material (SM) for detailed
derivations [38] ]. We emphasize that the treatment of the
recurrent, marginal, and transient cases has to be differ-
entiated due to the disparities in the visitation process, as
described in [9]. The calculations are based on the
hypothesis that the events fτk < Sg (with k ≤ n − 1) are
asymptotically (n → ∞) effectively independent. This key
hypothesis is extensively checked numerically in SM, and
self-consistently analytically checked below. The effective
independence of τk allows us to express the CDF ofMn via
the CDF of τk:

PðMn ≤ TÞ ≈
Yn−1
k¼0

Pðτk ≤ TÞ

≈ exp

�
−
Xn−1
k¼0

Z
∞

T
FkðτÞdτ

�
; ð7Þ

where FkðτÞ is the probability distribution function of τk,
whose asymptotics were determined recently in [9] (see
also SM for refined characterization in the marginal case).
For recurrent walks (μ < 1), the probability distribution

function of τk presents a scaling form, FkðτÞ ¼
k−1−1=μψðτ=k1=μÞ, where ψðuÞ is algebraic at small u
and exponential at large u [9]. This implies that the
CDF of Mn also has a scaling form, since

− lnPðMn ≤ TÞ ≈
Xn−1
k¼0

Z
∞

T
k−1−1=μψðτ=k1=μÞdτ

≈
Z

n=Tμ

0

dv
v

Z
∞

v−1=μ
ψðuÞdu

¼ − lnΞμðT=n1=μÞ: ð8Þ

This leads to the asymptotics of Eq. (4).
For marginal walks (μ ¼ 1), the CDF of Mn is shown to

be dominated by the behavior of FkðτÞ in the regime
ffiffiffi
k

p
∼

τ corresponding to the typical time needed to exit the
largest fully visited spherical domain, determined in [9,49].
Extending this approach to the determination of the scaling
of the exit time of the next largest fully visited domains, we
show in SM that FkðτÞ ¼ k−3=2ψðτ= ffiffiffi

k
p Þ with ψðuÞ ∝ u−3

at small u and − lnψðuÞ ∝ ffiffiffi
u

p
at large u (up to log

corrections). In turn, this scaling form allows one to adapt
the steps of Eq. (8) to the marginal case. We obtain that the
CDF of Mn=

ffiffiffi
n

p
has asymptotically a single scaling

parameter [hMni ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMnÞ

p
∼

ffiffiffi
n

p
up to log prefactors]

and converges to the cumulative distribution Ξ1 of Eq. (5).
For transient walks (μ > 1), for times τ ≪ k1þ1=μ, the

probability distribution function of τk is independent of k
and stretched exponentially distributed of exponent
½μ=ð1þ μÞ� [9]. By showing that the CDF of Mn is
controlled by this early time regime of FkðτÞ, we obtain
that the limit distribution (n → ∞) is the Gumbel law
displayed in Eq. (6).
Finally, we provide a self-consistent analytical check of

the effective independence of the fτkg used in Eq. (7). This
constitutes an extension of the argument of Ref. [50],
originally given for Gaussian correlated but identically
distributed random variables. The idea is that one can
neglect the effect of the correlations on the statistics of the
maximum if these correlations are typically much smaller
than the maximum’s fluctuations induced by the random
variables without these correlations.
To make this criteria quantitative, we consider the

typical correlation in the n random variables fτkgk<n,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covðτn=4; τ3n=4Þ

p
, and compare them to the maximum’s

standard deviation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMnÞ

p
, supposing that these

τk are independent, which are given by (3). An upper
bound of the inter-visit times correlation is given by
the Cauchy-Schwarz inequality, Covðτn=4; τ3n=4Þ ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðτn=4ÞVarðτ3n=4Þ

p
∝ VarðτnÞ, which is known from

[9] for any type of Markovian RW. For recurrent RWs, this
leads to

Covðτn=4; τ3n=4Þ ≤ n2=μ−1 ≪ n2=μ ∼ VarðMnÞ; ð9Þ

and for marginal RWs, to

Covðτn=4; τ3n=4Þ ≤
ffiffiffi
n

p
≪ n ∼ VarðMnÞ: ð10Þ

For transient RWs the variance of the inter-visit time is
constant so that

Covðτn=4; τ3n=4Þ ≤ const: ≪ ðln nÞ2=μ ∼ VarðMnÞ: ð11Þ

We conclude that, in all cases, the typical fluctuations
dominate the typical cross-correlations for all RW classes
so that fτkg are effectively independent and hence Eq. (7) is
self-consistently checked. Note that, contrary to the central
limit theorem where long-range correlations can deeply
impact the asymptotic law of the sum of n random variables,
the maximum is less sensitive to cross-correlations as its
fluctuations are relatively (compared to the mean) larger. As
an example, for n i.i.d. random variables with finite variance,
while the relative fluctuations of the sumdecays as1=

ffiffiffi
n

p
, the

relative fluctuations of the maximum decay logarithmically
as 1= ln n [14].
Further validation of our results is provided in Fig. 2, in

which we numerically test Eqs. (2)–(6) on representative
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recurrent, marginal, and transient RW models. We see a
very good agreement between our analytical predictions
and numerical simulations. The diversity of these examples
demonstrates the broad applicability of our theoretical
approach.
Starving random walks.—We now show that the knowl-

edge of the CDF of Mn is an essential tool to quantify the
interplay between the amount of the resource consumed
and the lifetime of a starving RW, as introduced above. We
first consider the number of sites visited at starvation NS,
which is a key observable to quantify the exploration
efficiency of starving RWs [24]. At starvation, at least n
sites have been visited if and only if all the first n times
between two visits are strictly less than the metabolic time
S, τ0 < S;…; τn−1 < S. In other words,

PðNS ≥ nÞ ¼ PðMn < SÞ; ð12Þ

so that the distribution of NS is directly deduced from that
of Mn. In particular, we obtain (see SM for derivation and
numerical verification [38]) the scaling with S of the first
two cumulants of NS,

hNSi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNSÞ

p
∝

8>><
>>:

Sμ μ < 1

S2 μ ¼ 1

exp ½ðS=aÞμ=ð1þμÞ� μ > 1;

ð13Þ

where a is a positive constant.
Next, the distribution of NS gives access to that of the

lifetime TS. The lifetime TS is given by the sum of the

inter-visit times τ̃k (k < n) corresponding to τk conditioned
on being lesser than the time S to starve. With this the
distribution of TS reads

PðTS ¼ tÞ

¼
Z

∞

0

dnP

�XNS−1

k¼0

τk þ S ¼ tjNS ¼ n

�
PðNS ¼ nÞ

≈
Z

∞

0

dnδðnhτ̃∞i þ S − tÞPðNS ¼ nÞ;

where we have used that, for large k, the distribution of τ̃k
becomes independent of k and the sum follows the law of
large numbers,

P
n−1
k¼0hτ̃ki ∼ nlimk→∞hτ̃ki ¼ nhτ̃∞i (see SM

for details and numerical checks [38]). This leads to the tail
distribution:

PðTS ≥ tÞ ≈ P

�
NS ≥

t − S
hτ̃∞i

�
: ð14Þ

In particular, the scaling with S of the first two cumulants
of the lifetime TS is given by

hTSi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTSÞ

p
∝

8>><
>>:

S μ < 1

S2 μ ¼ 1

exp½ðS=aÞμ=ð1þμÞ� μ > 1:

ð15Þ

In Fig. 3 we validate Eqs. (14) and (15) via simulations.
These results have strong consequences in the important
case of a diffusing particle in dimension 1, 2, and 3: a given
metabolic time S leads to radically different lifetimes
depending on the space dimension (see SM Fig. S7 for
comparison of the average lifetimes).

FIG. 2. Maximum of inter-visit times. (a)–(c) Mn CDF as a
function of the rescaled variable xn defined in Eq. (1) (insets show
them at small xn values) and (a0)–(c0) the corresponding averages
(blue circles) and standard deviations (orange squares) of Mn.
The black dashed lines correspond to the best fit of Eqs. (2)–(6).
Different universality classes are represented by (a) RWs on a
percolation cluster, μ ≈ 0.659 (recurrent), n ¼ 1389, 3727,
and 104; (b) nearest-neighbor 2D RWs, μ ¼ 1 (marginal),
n ≈ 2 × 107, 108, and 3 × 108 [51]; (c) nearest-neighbor 3D
RWs, μ ¼ 3=2 (transient), n ≈ 4 × 104, 2 × 105, and 106 [52].
Increasing values of n are represented by blue circles, orange
stars, and green squares.

FIG. 3. Lifetime of a starving RW. (a)–(c) TS distributions as a
function of the rescaled variable x≡ TS=hTSi (the insets show the
behavior at small x values) and (a0)–(c0) the corresponding
averages (blue circles) and standard deviations (orange squares)
of TS . The black dashed lines correspond to the best fit of the
theory. Different universality classes are represented by (a) RWs
on a percolation cluster, μ ≈ 0.659 (recurrent), S ¼ 14 667,
31 622, and 68 129; (b) nearest-neighbor 2D RWs, μ ¼ 1

(marginal), S ¼ 2335, 4832, and 104; (c) nearest-neighbor 3D
RWs, μ ¼ 3=2 (transient),S ¼ 12, 17, and 22. Increasing values of
S are represented by blue circles, orange stars, and green squares.
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We show in SM that the knowledge of the lifetime
distribution allows one to obtain the distribution of the
position of the forager at starvation, denoted by R⃗S and
defined for the isotropic RWs considered here by its norm
RS [38]. In particular, we find that (up to log corrections in
marginal case)

hRSi;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRSÞ

p
∝

8>><
>>:
S1=dw μ< 1

S2=dw μ¼ 1

exp
h
1
dw

�
S
a

�
μ=ð1þμÞi

μ> 1:

ð16Þ

Several comments on Eqs. (13)–(16), echoing the results
of the 1D nearest-neighbor starving RW [24,25] case
recalled in the Introduction, are in order. (i) The fluctua-
tions of NS, TS , and RS are relevant for all RWs classes, as
the average and the standard deviation grow similarly. This
highlights the importance of the distribution, Eq. (12) [and
Eqs. (1)–(6)]. (ii) Averages of these observables grow
algebraically for recurrent (and marginal) RWs. This
generalizes the case of a regular 1D starving RW to the
case of general recurrent RWs. Strikingly, the mean lifetime
is linear with the starvation index S for all recurrent walks
(independently of μ). On the other hand, the averages of
NS , TS , and RS become stretch-exponentially large for
transient RWs. Note that the mean-field exponential behav-
ior is, as it should, recovered in the limit df → ∞. (iii) The
distributions of all these observables obey asymptotically a
single-parameter scaling for any value of μ. This extends
the result known for dw ¼ 2 in the 1D case [24,25] to
general Markovian starving RWs.
We have shown that the maximum of the inter-visit times

of general Markovian RWs assumes simple, universal limit
distributions. We have determined the corresponding
rescaled variables and the asymptotic of the limit distri-
butions. Beyond this fundamental aspect, we have shown
that these results have applications in foraging theory. They
have enabled us to determine the statistics of a variety of
key observables of the d-dimensional starving RW prob-
lem, and to reveal their universal features. While the
universality breaks down when the inter-visit times corre-
lations cannot be neglected, as is the case for smooth
processes (such as the random acceleration process [53];
see SM [38]), our results hold for RWs on graphs with
strongly inhomogeneous degree distributions [see SM for
the typical example of the ðu; vÞ flowers [54,55] ].

We thank J. Brémont, J. Klinger, P. Krapivsky, and S.
Redner for useful discussions.
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