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The propagation characteristics of fermionic and bosonic quasiparticles determine the fundamental
transport properties of solids and are of great technological relevance for designing logic devices. In
particular, nonreciprocity, which describes that a quasiparticle flows preferably along a certain direction of
a symmetry path, is an essential requirement to realize logic architectures, e.g., switches, diodes,
transistors, etc. Here we introduce a mechanism, which leads to giant nonreciprocity of ultrafast terahertz
magnons in ferromagnetic films with a large spin-orbit coupling. The mechanism is based on the
competition between the exchange and spin-orbit scattering. We anticipate that the effect can be used to
excite nonreciprocal or even unidirectional magnons in a large class of ultrathin films and nanostructures
grown on substrates with a large spin-orbit coupling.

DOI: 10.1103/PhysRevLett.132.126702

In physics when the real or reciprocal space propagation
of quasiparticles, e.g., electrons, photons, phonons, or
magnons in a medium along a certain symmetry line
depends on the direction, one speaks of nonreciprocity
[1–3]. This property is the key ingredient for designing
logic devices, which utilize these quasiparticles as carriers,
such as rectifiers, switches, diodes, transistors, etc. In the
emerging field of magnonics, which focuses on utilizing
magnons, quanta of spin waves, for information processing,
the magnon nonreciprocity is of special interest. Several
magnon-based logic elements have been proposed based on
this property [4–7]. Apart from the fact that in thin
ferromagnetic films the classical dipolar Damon-Eschbach
magnons are naturally nonreciprocal [8–11], there has been
several proposals to generate nonreciprocal magnons in
engineered structures. For instance, in structures with
modified geometries [12–21], magnetic films with a sig-
nificant Dzyaloshinskii-Moriya interaction (DMI) [22–26],
coupled magnetic bilayers [27–31], systems with chiral
spin Seebeck effect [32], magnon-fluxon coupled structures
[33], or devices with a magnon Doppler shift [34,35],
nonreciprocal magnons have been demonstrated. Most of
these approaches are useful for low-frequency, long-
wavelength magnons only. Since the speed of operation
is an extremely important concept in magnonics, new
approaches for exciting nonreciprocal high-frequency,
terahertz (THz) magnons are highly in demand [25,36,37].
Here we introduce a mechanism, which leads to giant

nonreciprocity of exchange-dominated ultrafast THz mag-
nons in ultrathin ferromagnetic films having a large spin-
orbit coupling (SOC), without influencing their frequency.
When a beam of electrons is scattered from a surface

with a large SOC it can be polarized, since the scattering
cross section becomes spin dependent. The polarization

vector of the beam is transversal and is along the scattering
plane’s normal vector n̂, if the scattering plane is a
mirror plane of the crystal [38–40]. Likewise, when a
spin-polarized electron beam with a polarization vector
parallel and antiparallel to n̂ is scattered from such a surface
one expects a notable spin asymmetry, i.e., spin-orbit
asymmetry (SOA) [38–40].
A spin asymmetry is also expected when a spin-

polarized beam is scattered from a ferromagnetic surface
with a spontaneous magnetizationM. The physical mecha-
nism responsible for this “exchange asymmetry” (ExA) is
the quantum mechanical exchange scattering process. Such
a spin asymmetry reflects the local magnetic order and has
been used to probe the surface magnetism [41,42]. Since in
bulk 3d ferromagnets SOC is rather small, the observed
spin asymmetry of electrons scattered from these surfaces is
mainly of ExA type, caused by the exchange scattering
process.
The situation becomes complex when ultrathin films of

3d ferromagnets are grown on heavy-element metallic
substrates. In such a case SOC can be significantly large
and can dominate the spin asymmetry of the spin-polarized
electrons scattered from such surfaces. The mechanisms
behind SOA and ExA are well known for elastically
scattered electrons [38–40]. However, little is known for
the case in which electrons show an apparent energy loss
(or gain) during the scattering event [43,44]. Spin-polarized
electrons can be used to excite collective spin excitations at
surfaces, e.g., magnons [45–47]. The main physical mecha-
nism behind the magnon excitation process is the exchange
scattering process in which an electron with the spin
parallel to M is scattered to an electron with the opposite
spin (see Supplemental Note I of [48]). It is obvious that the
coexistence of SOA and ExAwould influence the magnon
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excitation process in systems exhibiting a large SOC. We
will demonstrate that a strong competition between SOA
and ExA leads to a substantial THz magnon nonreciprocity.
The effect is significant and can even lead to unidirectional
magnons for a certain range of magnon wave vector Q.
Such an effect may be used to realize new functionalities
in magnonic devices, which utilize ultrafast exchange-
dominated THz magnons.
The experiments were performed on an ultrathin Co

layer, with the thickness of 1.8 atomic layers, epitaxially
grown on the Ir(001) surface. The magnons were excited
and probed by means of spin-polarized high-resolution
electron energy-loss spectroscopy (SPHREELS). The
incoming spin-polarized electron beam excites the mag-
nons and the outgoing beam carries all the information
regarding the excitations left behind e.g., energy (fre-
quency), wave vector (wavelength), and lifetime [47].
All the experiments were performed at room temperature.
The scattering geometry is schematically shown in the inset
of Fig. 1. A monochromatic spin-polarized electron beam
with the spin-polarization vector P parallel and antiparallel
to the scattering plane’s normal vector n̂ is scattered from
the surface. The energy distribution of the scattered
electrons is recorded with respect to the direction of P.
Conventionally, the experiments are performed for a certain
magnetization direction, e.g., parallel to n̂. Here, in order to
address the SOC-related phenomena the spectra were
recorded for two possible directions of M parallel and
antiparallel to n̂. This results in four partial intensity spectra
Iμν, where the subscript μ represents the direction ofM and

ν represents that of P. For instance I↓↓ (I↑↑) denotes the
partial intensity spectrum in which the direction of both M
and P is parallel (antiparallel) to n̂. Likewise, I↓↑ (I↑↓)
denotes the partial intensity spectrum when M is parallel
(antiparallel) to n̂ and P is antiparallel (parallel) to n̂. In the
spectra shown in Fig. 1(a), first the sample was magnetized
along the ½11̄0�-direction, which indicates μ ¼ ↓. Then I↓↓
and I↓↑ were recorded. The difference spectrum denoted as
I↓↓ − I↓↑ represents a spin-flip excitation, i.e., a magnon.
The magnon excitation is mediated by the exchange
mechanism in which a spin-down electron (an electron
with the spin parallel to M) is scattered to an electron of
spin-up character (an electron with the spin antiparallel to
M), transferring 1ℏ angular momentum into the sample (ℏ
is the reduced Planck’s constant, see Supplemental Note I
of the Supplemental Material [48]). Note that the spin-up
and spin-down are defined with respect to the direction of
majority and minority spin states of the sample. Hence, in
the absence of SOC one expects to observe an identical
signal when M is switched to the opposite direction,
i.e., ½1̄10�.
Since the direction of M is reversed with respect

to the initial direction, the sign of the difference spectrum
I↑↓ − I↑↑ should be opposite to that of I↓↓ − I↓↑. In
Fig. 1(b) we show the spectra recorded for Mk½1̄10�.
Since magnons are always excited by spin-down electrons,
one must observe a negative difference spectrum, as
observed in Fig. 1(b). The small peak at about 53 meV
is caused by the vibrational excitations of adsorbates and

FIG. 1. SPHREEL spectra recorded at the wave vector of jQj ¼ −0.4 Å−1, using an incident energy of Ei ¼ 9 eV. The partial
intensity spectra are denoted by Iμν, where the subscripts μ and ν represent the direction ofM and that of the spin polarization vector P,
respectively. The difference spectra are shown by the green color, which represent the magnon signal. The results forMk½11̄0� are shown
in (a) and those for Mk½1̄10� are shown in (b), representing magnons with propagation direction along the [110] and ½1̄ 1̄ 0� direction,
respectively. A schematic representation of the scattering geometry is shown in the inset. (c) The frequency-momentum map of the
difference spectra jI↓↓ − I↓↑j or jI↑↓ − I↑↑j recorded for the two opposite directions of the magnetization, i.e., Mk½1̄10� and Mk½11̄0�.
The color represents also the amplitude of coherently excited magnons. Data with the positive (negative) value of wave vector indicate
the cases for which Mk½11̄0� (Mk½1̄10�) and the propagation direction along the [110] (½1̄ 1̄ 0�) direction.
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does not show any dependence neither on the spin orienta-
tion of the electron beam nor on the direction of M. The
magnon signal appears as a satellite at about 66 meV. The
surprising result is that the amplitude of the difference
spectrum is largely suppressed. In ferromagnets, the time-
reversal symmetry T is broken. Since reversing the sample
magnetization is equivalent to a time-inversion experiment,
the measurements performed for two opposite directions of
M are equivalent to magnons propagating along opposite
directions, perpendicular to M. Comparing Figs. 1(a) and
1(b) reveals that the magnons with the propagation direction
along [110] and ½1̄ 1̄ 0� possess very different excitation
amplitudes. Hereafter we refer to this observation as magnon
nonreciprocity, reflecting the nonreciprocal behavior of the
amplitude of coherently excited magnons.
In order to answer the question whether this magnon

nonreciprocity is present for magnons having different
wave vectors, we performed the same experiments for
different values of jQj and the results are summarized in
Fig. 1(c). The total scattering angle θ0 ¼ θi þ θf ¼ 80°
was kept unchanged, in order to avoid unwanted effects
[48]. The magnons with positive (negative) values of jQj
represent the cases in which Mk½11̄0� (Mk½1̄10�) and the
propagation direction is along the [110] (½1̄ 1̄ 0�) direction.
The magnon amplitude is encoded in the color map,
where the quantity jI↓↓ − I↓↑j (jI↑↓ − I↑↑j) is displayed.
Figure 1(c) clearly indicates that the magnon nonreciproc-
ity is significant at the low wave vector regime, in particular
for jQj ≈ −0.4� 0.1 Å−1, and becomes less significant at
larger wave vectors. We note that a significant DMI [49,50]
can lead to a magnon nonreciprocity [22,26,51–53]. The
DMI-induced energy asymmetry for this particular wave
vector is on the order of 1 meV (0.24 THz) or less [54]. The
observed huge asymmetry in the magnon amplitude cannot
be attributed to the DMI.
To visualize the dynamics of the magnons with opposite

propagation directions, we constructed the magnon wave
packets in real time and space (see Supplemental Note II
and Supplemental Movie [48]). The results indicate that the
two magnon wave packets exhibit very different dynamics
but nearly the same frequency.
In order to shed light on the origin of this giant magnon

nonreciprocity we investigated the spin asymmetry
of the electrons scattered from this surface in great detail.
Figure 2(a) shows the spin asymmetry recorded for the
elastic scattering as a function of the incident beam energy
Ei. The results are shown for four different cases: (i) the
partial spin asymmetry for Mk½11̄0� defined as AMk½11̄0� ¼
ðI↓↓ − I↓↑Þ=ðI↓↓ þ I↓↑Þ, (ii) the partial spin asymmetry
for Mk½1̄10�AMk½1̄10� ¼ ðI↑↓−I↑↑Þ=ðI↑↓þI↑↑Þ, (iii) ExA
AEx ¼ ðI↓↓ − I↓↑ − I↑↓ þ I↑↑Þ=ðI↓↓ þ I↓↑ þ I↑↓ þ I↑↑Þ≈
ð1=2ÞðAM⃗k½11̄0� − AM⃗k½1̄10�Þ, and (iv) SOA ASO¼ðI↓↓−
I↑↑þ I↑↓− I↓↑Þ=ðI↓↓þ I↓↑þ I↑↓þ I↑↑Þ≈ ð1=2ÞðAM⃗k½11̄0�þ
AM⃗k½1̄10�Þ.We note that in order to separate the ExA and SOA

we assume that the interference between these two is
negligible. This is a good assumption for the measured
range of Ei. The important outcome of this investigation is
that both ExA and SOA are substantially large and exhibit a
strong dependence on Ei. More importantly, SOA is
unexpectedly large and for 8 eV < Ei < 14 eV overcomes
ExA. This can have very important consequences on the
magnon excitation process, when electrons with an incident
energy in this range are used (see Supplemental Note I
of [48]). The results presented in Fig. 2(a) were obtained for
the elastic part of the scattering. However, one has to
consider the following two important points. (i) The elastic
and inelastic scattering are mutually interconnected, mean-
ing that if spin-orbit scattering is significant in the elastic
channel one would expect also a large contribution in the
inelastic channel [44,55]. (ii) The magnon excitation is
mediated by the quantum mechanical exchange process, in
which an electron of minority spin character occupies an
empty state above the Fermi-level of the system and an
electron of majority spin character leaves the sample from
an occupied state below the Fermi-level [47,56,66–68].
In spite of the fact that themagnon excitation peak appears in

FIG. 2. (a) Different contributions to the spin asymmetry of
elastically scattered electrons (jQj ¼ 0) versus the incident beam
energy Ei, as defined in the text. (b) The spin-orbit ASO and
exchange AEx asymmetry as a function of the wave vector,
recorded for the incident energy of Ei ¼ 9 eV. The shaded area in
(b) highlights the region of wave vector for which SOA favors the
magnon excitations process.
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the inelastic (energy-loss) part of the spectrum, the excita-
tion process is not a conventional inelastic process. Note that
an inelastic scattering process is observed in the inelastic
neutron or photon scattering experiments, where the scatter-
ing particles are truly inelastically scattered. In SPHREELS
the apparent energy loss of the electron is due to the fact that
the scattered electron stems from a lower energy state of the
solid (see Refs. [46,47] and also Supplemental Note I
of [48]). Based on the above mentioned arguments one
would conclude that a competition between the large spin-
orbit scattering and the exchange scattering plays a decisive
role in the magnon excitation process and consequently
on the observed magnon nonreciprocity. For Mk½11̄0�,
Qk½110�, it would enhance the excitation cross section
and for Mk½1̄10�, Qk½1̄ 1̄ 0�, it would suppress the cross
section. In other words, the chiral nature of SOC either
hinders or facilitates the magnon excitations by the injected
electron, depending on the relative orientation of the spin of
the electron and the magnetization direction.
An important consideration is that both ExA and SOA

depend on the scattering angles. Hence, when recording the
spectra for different values of jQj these quantities can be
very different and may even undergo a sign reversal.
In order to address this point we measured ExA and
SOA as a function of jQj. The results for the incident
energy of Ei ¼ 9 eV are summarized in Fig. 2(b). The
choice of Ei ¼ 9 eV is based on the fact that at this energy
the SOA is at a maximum. As it is clearly apparent,
although ExA shows variations with jQj and undergoes a
minimum near jQj ≈ −0.25 Å−1, it always remains neg-
ative. In contrast, SOA exhibits drastic changes as jQj
increases. It even changes the sign from negative to positive
at jQj ≈ −0.25 Å−1. For wave vectors between −0.25 and
−0.5 Å−1 the opposite sign of ASO with respect to that of
AEx leads to an enhancement of the total spin asymmetry
(larger probability of spin-down to spin-up scattering),
which in turn is a measure of the magnons’ excitation cross
section. Hence for one magnetization direction, i.e.,
Mk½11̄0� and Qk½110�, the excitation cross section is
enhanced. Consequently, for the other magnetization direc-
tion, i.e., Mk½1̄10� and Qk½1̄ 1̄ 0�, the cross section is
suppressed.
Unfortunately, a microscopic theory which can account

for all the processes during the SPHREELS experiments
from magnetic surfaces does not currently exist. However,
one possible way to verify that the observed magnon
nonreciprocity is due to the competition between ExA
and SOAwould be to simulate the experimental data using
the dipolar scattering theory. An important contribution to
include is the SOC during the scattering process. Luckily
such a theory has been recently developed for nonmagnetic
surfaces [44]. Simulations based on the dipolar scattering
theory including SOC can reproduce the experimental
results and explain the observed magnon nonreciprocity
(see Supplemental Note III for details [48]). We calculated

the magnon nonreciprocity, defined as the ratio of the
amplitudes of the coherent magnon wave packets with the
same eigenfrequency and wave vector but propagating
along opposite directions ([110] and ½1̄ 1̄ 0�). The results
are summarized in Fig. 3 and are compared to those of the
experiment. The results clearly indicate that the observed
magnon nonreciprocity is a consequence of the strong
competition between ExA and SOA.
The observed phenomenon is not limited to the present

system. Although weaker, it should also be present in other
SPHREELS experiments reported earlier [22,23,26,69]
(see Supplemental Note III of [48]). We anticipate that it
can take place in many other ferromagnetic thin films,
heterostructures and nanostructures grown on heavy-
element substrates or in heterostructures with a large
SOC [70], e.g., magnetic structures grown on topological
insulators [57] or two-dimensional van der Waals material
[71–73], magnetic iridates [74], perovskite heterostructures
[75], etc. The effect shall be observed by the laser [76,77]
or transport based [78–84] excitation schemes, facilitating
its integration in the current magnon-based technologies.
In conclusion, we demonstrated that the presence of a

large SOC leads to nonreciprocal THz magnon amplitudes
in ultrathin films. The nonreciprocity is understood based
on the competition between two fundamental scattering
mechanisms, namely, spin-orbit and exchange scattering
mechanisms. Because of the large SOC, the spin-orbit
scattering is significantly large and, under some circum-
stances, can overcome the exchange scattering mechanism.
Combined with the fact that in ferromagnets T is broken,
the spin-orbit scattering can either enhance or suppress the
cross section of magnon excitations, when the magnons are
excited by electrons. Hence, the amplitude of coherently
excited magnons becomes dependent on the direction of
static magnetization. The effect can be utilized to excite
nonreciprocal magnons, having the same magnitude of
wave vector and frequency, in ultrathin magnetic films and
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FIG. 3. The magnon nonreciprocity defined as the ratio of the
amplitudes of the coherent magnon wave packets with the same
eigenfrequency and wave vector but propagating along opposite
directions ([110] and ½1̄ 1̄ 0�). For the case that the nonreciprocity
is equal to the unity the wave packets possess identical ampli-
tudes and are perfectly reciprocal. Zero represents the unidirec-
tional case.
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nanostructures grown on heavy-element substrates or even
in more complex heterostructures with a large SOC. The
effect is not restricted to the scattering experiments and
must also be present in the transport based tunneling
experiments, in which a spin-polarized current is used to
excite magnons in tunneling magnetoresistance type of
devices [78–84].
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