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We study a multiterminal Josephson junction based on an interacting quantum dot coupled to n
superconducting BCS leads. Using an Anderson type model of a local level with an arbitrary on-site
Coulomb repulsion, we uncover its surprising equivalence with an effective two-terminal junction with
symmetric couplings to appropriately phase-biased leads. Regardless of the strength of the Coulomb
interaction, this hidden symmetry enables us to apply well-established numerical and theoretical tools for
exact evaluation of various physical quantities, and imposes strict relations among them. Focusing on three-
terminal devices, we then demonstrate several phenomena such as the existence of the finite energy band
crossings and superconducting transistor and diode effects, as well as current phase relation modulation.
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Introduction.—Josephson junctions (JJs) serve as fun-
damental components for a range of quantum devices
thanks to their precise superconducting phase control
[1–5]. Therefore, their multiterminal counterparts with
n ≥ 3 leads have recently received significant theoretical
attention. From a topological perspective, their subgap
energy levels span a synthetic (n − 1)-dimensional
Brillouin zone (BZ) leading to the potential emergence
of zero- and finite-energy Weyl nodes [6–13]. Additionally,
multiterminal JJs with integrated topological superconduc-
tors hold promise for performing braiding operations on
zero-energy Majorana bound states [14,15], while in the
nonequilibrium regime, intriguing phenomena such as
Cooper pair quartet transport emerge [16]. On the exper-
imental front, the realization of multiterminal supercon-
ducting (SC) devices has recently advanced significantly,
with pioneering experiments in graphene [17], weak links
[18], and ongoing innovations appearing [19–24].
Because of the computational constraints arising from

the number of leads, interactions within the central junction
region are mostly neglected or approximated [25–27].
Notably, even the numerical renormalization group
(NRG), a standard for analyzing strongly interacting super-
conducting single-level Anderson impurity models (SC-
AIM), whose relevance to accurately describe realistic
experimental setups was established over a decade ago
[28,29], faces challenges in this context [30].
In this Letter, we show that the paradigmatic n-terminal

SC-AIM can be exactly mapped onto a two-terminal
version with symmetric tunnel couplings and a suitable
phase bias. The mapping is completely determined by the
original configuration through a gauge-invariant geometric
factor denoted as χ. Since the two-terminal SC-AIM can be

exactly addressed by means of NRG [30–34] and quantum
Monte Carlo [29,35–37], or by other numerous tools
[25–27,38–40], the knowledge of the geometric factor χ
can be used to completely understand the behavior of
multiterminal SC-AIM as demonstrated here.
Unveiling the geometric properties of the solution for

multiterminal SC-AIM allows us to make meaningful and
nontrivial assertions about its phase diagrams and associ-
ated Josephson currents. We especially highlight the
practical possibility to realize the high-symmetry points,
which are related to the so-called doublet chimney [40–42]
and remain robust regardless of the strength of the
Coulomb interaction. Furthermore, our work showcases
the practical advantages of incorporating three-terminal
quantum dot-based devices into SC circuits, as they
introduce SC transistor and diode effects, and enable the
modulation of supercurrent phases [43].
Model.—We consider a general multiterminal SC-AIM

with a single-level quantum dot (QD) as depicted sche-
matically in Fig. 1(a). Its Hamiltonian reads

H ¼ Hd þ
Xn
j¼1

ðHj;SC þHj;TÞ; ð1aÞ

with j∈ f1;…ng denoting a given lead with an SC phase
φj and

Hd ¼
X
σ

εdd
†
σdσ þ Ud†↑d↑d

†
↓d↓; ð1bÞ

Hj;SC ¼
X
kσ

εkjc
†
kjσckjσ −

X
k

�
Δjc

†
kj↑c

†
−kj↓ þ H:c:

�
; ð1cÞ
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Hj;T ¼
X
kσ

�
V�
kjc

†
kjσdσ þ Vkjd

†
σckjσ

�
; ð1dÞ

where c†kjσ (ckjσ) creates (annihilates) an electron of spin
σ ∈ f↑;↓g, quasimomentum k, and energy εkj in the lead

j, while d†σ (dσ) creates (annihilates) a dot electron of spin
σ. We assume the same gap Δ and the same band width 2B
in all leads, so that Δj ≡ Δeiφj . Such a choice reflects
typical experimental setups, where the terminals are made
from the same superconducting material. The coupling to
the leads is conveniently characterized by the tunneling
strengths (ℏ ¼ 1) Γj ≡ π

P
k jVkjj2δðω − εkjÞ, which are

presumed to be energy independent for simplicity. The total
tunneling strength is Γ≡P

n
j¼1 Γj, while relative couplings

are γj ≡ Γj=Γ (
P

n
j¼1 γj ¼ 1). The QD is characterized by

its energy level εd and Coulomb repulsion U. In this Letter,
we focus on a half-filled QD by setting εd ¼ −U=2, but
stress that all of the findings can be easily extended beyond
such a constraint.
Gauge invariance of the solution.—When focusing only

on physical quantities related to the dot degrees of freedom,
like the on-dot spectral function or thermodynamic quan-
tities such as the free energy and supercurrents, only the dot
Green function is required. It is a functional of U and the
noninteracting Green function, which, in turn, is a func-
tional of the (retarded) tunneling self-energy ⅀ðωþÞ given

by the n leads. Using Nambu spinors D† ¼ �
d†↑; d↓

�
, the

matrix form of ⅀ðωþÞ becomes

⅀ðωþÞ ¼ Γ
�

ω χΔ
χ �Δ ω

�
FðωþÞ; ð2Þ

where FðωþÞ parametrically depends only onΔ and B [see,
e.g., Ref. [44] and the Supplemental Material (SM) [45] ].
Complex-valued χ reads

χ ≡Xn
j¼1

γjeiφj ð3Þ

and contains complete information about the geometric
configuration of the n-terminal SC-AIM including all
relative weights and phase biases. Using the global
gauge invariance, we can moreover shift all phases as
φj → φj − δ, which rotates χ clockwise by δ, but leaves all
physical properties invariant [51]. Consequently, only the
gauge-invariant magnitude χ ≡ jχ j is of significance, so the
replacement χ → χ can be readily performed in Eq. (2). As
shown in SM [45], χ can be simplified to

χ ≡ jχ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

Xn
j>l¼1

γjγlsin2
φj − φl

2

vuut : ð4Þ

While generally 0 ≤ χ ≤ 1, for n ¼ 1 it trivially reads
χ ¼ 1. However, already a coupling-symmetric two-termi-
nal SC-AIM encompasses all possible values of χ as χ ¼
j cosðφ=2Þj [52]. Consequently, any n-terminal setup can be
mapped onto its coupling-symmetric two-lead counterpart
with the same U, total Γ and a phase difference φ that
corresponds to the multiterminal value of χ. This con-
stitutes the main finding of our work with a number of
conceptual and practical implications, which we will
explore in what follows.
Before proceeding with the single QD case, we note that

our approach can be straightforwardly extended to systems
with p dots (levels), of which q ones are connected
exclusively to a distinct set of SC leads. These configu-
rations, detailed in SM [45], can be equivalently repre-
sented by a mapping where each dot symmetrically couples
to just two SC leads. The state of the system is then fully
characterized by p total couplings Γi at each dot, q real-
valued geometric factors χi and q − 1 local phase shifts δi.
However, the method breaks down when even a single lead
couples to multiple dots (levels).
Phase diagrams.—The introduced mapping reduces the

solution of any single level n-terminal setup to that of the
corresponding symmetric two-terminal configuration.
Consequently, the ground state (GS) of an n-terminal
SC-AIM is restricted to either singlet or doublet parity
with a quantum phase transition (QPT) occurring at specific

(a) (b)

(c) (d)

FIG. 1. (a) Schematic depiction of a multiterminal Josephson
junction with n SC leads (green) and a centrally placed interact-
ing region of a single level QD (gray). (b) The complex number χ ,
according to Eq. (3), (shown for n ¼ 3) plays a fundamental role
for properties of n-terminal SC-AIMs. When χ ¼ 0 finite energy
crossings of two singlet states (blue) above a doublet ground state
(red) are observed. (c) Singlet crossing for n ¼ 2 occurs only
under the highly restrictive condition Γ1 ¼ Γ2 at
φ≡ φ2 − φ1 ¼ π. (d) For n ¼ 3, the singlet crossings appear
for Γ1, Γ2, Γ3, satisfying a triangular inequality γmax ≤ 1=2 where
γmax ¼ maxðfγjgÞ and γj ≡ Γj=

P
l Γl.
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critical values χ� fixed only by the combination of U, Γ,
and Δ [5]. The phase diagram therefore turns out to be a
contour plot of χ that designates a singlet GS for χ > χ� and
a doublet for χ < χ�.
For instance, when we select n ¼ 3 with U ¼ 3Δ,

εd ¼ −U=2, and Γ ¼ Δ, the QPT point of the correspond-
ing symmetric two-terminal setup, as determined by NRG,
is χ� ¼ cosφ�=2 ≈ 0.721 [see SM [45] and Fig. 3(a)].
Setting now φ1 ¼ 0, by virtue of gauge invariance, phase
diagrams in the φ2 − φ3 plane are obtained by contour
plotting χ as shown for varying γ2 and γ3 in Fig. 2 in the left
triangular map with six particular cases labeled (a) to
(f) highlighted on its right. The critical value of χ� is
denoted in white and marks the boundary between the
singlet (blue) and doublet (red) GS regions.
Notably, (a) and (c) correspond to the two-terminal setup

with a single independent phase difference, as one of the

leads is disconnected. The φ2 − φ3 maps contain then
redundant information in the form of perfect stripes of
equivalued χ. Adding a third weakly coupled terminal,
initially only bends the parity transition lines as showcased
in the inset (b). Moving toward the center of the left triangle
map, the bending intensifies, giving rise to isolated pockets
of singlet GS in the middle of the phase diagrams, while
remnants of the doublet stripes remain as seen in (d). A
further increase of γ1 leads then to the breakdown of the
doublet GS stripes, transforming them into four doublet GS
pockets at the corners of the first BZ, as depicted in (e)
and (f).
In the end, the universal nature of the χ factor in

determining phase diagrams cannot be understated, as
changing U and Γ requires just replotting of the above
color maps by using the respective χ�. On the other hand,
when n is altered, one updates only the geometric factor χ,

FIG. 2. Maps of geometric factor χ [Eq. (4)] in φ2—φ3 planes for a three-terminal setup (φ1 ≡ 0) and different values of γ2 and γ3. The
coloring is chosen so that the maps can be read as phase diagrams for the case Γ ¼ Δ, U ¼ 3Δ for which χ� ¼ 0.721. Here, white
represents the phase boundaries χ ¼ χ�, blue marks the singlet GS (χ > χ�), and red a doublet GS (χ < χ�). In the composite map on the
left, the phase diagrams are ordered along the γ2 and γ3 axes with a step in γ2 and γ3 being 0.05. The maps within the dashed green border
satisfy the triangular rule maxðfγjgÞ ≤ 1=2 and can therefore host the high-symmetry points, where χ ¼ 0. Four of such cases, e.g., (b)–
(e), are shown enlarged with χ ¼ 0 points indicated by green dots [(b), (d), (e)] or solid lines [(c)]. Cases (a) and (f) are taken from the
outside of the triangular region. Note that, for clarity, all maps extend beyond the first Brillouin zone, i.e., φ2;φ3 ∈ ð−π; πi, which is
marked by a dotted green square in panel (f).
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but χ� remains the same (see SM [45] for examples
of n ¼ 4).
High-symmetry points.—When χ ¼ 0, a special high-

symmetry point appears at εd ¼ −U=2. Here, the doublet
GS and a finite energy crossing of two excited singlets is
protected by an additional symmetry in the spin space of
the QD for an arbitrary number of terminals [53] as
illustrated for n ¼ 2 in Fig. 1(c) and for n ¼ 3 in
Fig. 1(d). Recently, it has gained a lot of attention since
it relates to the so-called doublet chimney in the phase
diagram of the two-terminal setup [40–42]. However, it is
crucial to note that in the two-terminal setup, this high-
symmetry point can only be realized under perfectly
symmetric coupling conditions. Consequently, its exper-
imental realization remains a formidable challenge, pri-
marily due to the limited control over coupling strengths
during device fabrication, although the doublet chimney
related to the symmetry of this point is far more robust and
was already realized experimentally in Ref. [41].
Nevertheless, in multiterminal setups the realization of

high-symmetry points is more straightforward, as can be
deduced from Fig. 1(b). To obtain χ ¼ 0, a closed loop,
which begins and ends in zero, needs to be formed when
summing γjeiφj contributions together. Clearly, the task
simplifies as n increases. Already for n ¼ 3, the solution for
the phases reads

φ�
j ¼ π∓ ð−1Þj arccos1− 2ðγ2þ γ3− γ2γ3þ γ2jÞ

2ð1− γ2 − γ3Þγj
þ 2πzj;

ð5Þ
with j∈ 2, 3 (φ1 ≡ 0) and zj ∈Z, φ3 ¼ φ2 � π for γ2 ¼
γ3 ¼ 1=2 and φj ¼ �π for γ1 ¼ γj ¼ 1=2. Solution for χ ¼
0 thus exists, when γmax ≤ 1=2 where γmax ¼ maxðfγjgÞ.
This defines a triangular region in the γ2 − γ3 coupling
space, as highlighted by the green dashed lines in Fig. 2.
There are thus no χ ¼ 0 points outside of this region [insets
(a) and (f)], but within it pairs of them appear in the first BZ
[inset (d)]. Exactly at the border, the pairs merge together,
so the number of χ ¼ 0 points reduces to one per the first
BZ as seen by moving from (d) to (e) [54]. In clear contrast
to the two-terminal setup, one fourth of the parameter space
can be tuned into the desired χ ¼ 0 regime, which paves the
way for the experimental observation of these special
points. Additionally, the symmetry enforces crossing of
two excited singlets at finite energy, and their overall
behavior for n ¼ 3 is described by a two-dimensional
Weyl Hamiltonian [Fig. 1(d)]. As explained in SM [45],
for n ¼ 4, lines or loops of χ ¼ 0 points form in the three-
dimensional synthetic BZ with isolated points appearing
only for maxðfγjgÞ ¼ 1=2.
Josephson currents.—The versatility of multiterminal

Josephson junctions arises from their ability to divide
supercurrents into n ≥ 3 terminals, each denoted as Jj
and passing through the respective lead j, as depicted in

Fig. 3(b). Diverse novel phenomena unfold then, encom-
passing SC transistor and SC diode effects, as well as
current modulation. To demonstrate these, we apply the
Hellmann-Feynman theorem at zero temperature in con-
junction with the herein discovered mapping (see also
SM [45]):

Jj ¼
2e
ℏ

∂E
∂φj

¼ 2e
ℏ
∂E
∂χ

∂χ

∂φj
¼ J ðχÞ ∂χ

∂φj
; ð6Þ

where E is the GS energy, J ðχÞ≡ ð2e=ℏÞð∂E=∂χÞ is a
universal function of χ with parametric dependency on U
and Γ, while all geometric details, i.e., n, γj, and φj, are

FIG. 3. (a) The universal function J ðχÞ calculated for U ¼ 3Δ
and Γ ¼ Δ and scaled by J0 ¼ 2Δe=ℏ. (b) Scheme of the
supercurrents Jj in a three-terminal device. (c1) The current
phase relation (CPR) of the supercurrent J2 is modulated by
controlling φ3. (c2) Supercurrent J2 can be switched off by phase
manipulation of the weakly coupled lead j ¼ 3, which demon-
strates a superconducting transistorlike effect. (c3) J2 as a
function of φ2 for φ3 ¼ φ2 þ ϕ illustrates the appearance of a
diode effect. Maps (d1), (d2), (d3) show supercurrents J1, J2, and
J3 in the φ2 − φ3 plane, which correspond to the panels (c1)–(c3).
All panels have been obtained for γ1 ¼ 0.45, γ2 ¼ 0.40, and γ3 ¼
0.15 with U ¼ 3Δ, Γ ¼ Δ, and φ1 ≡ 0.
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confined only to the analytic factors ð∂χ=∂φjÞ. Again, the
J ðχÞ input can be extracted from the symmetric two-
terminal configuration by a numeric method of choice (for
details see SM [45]), with an NRG solution shown in
Fig. 3(a) for U ¼ 3Δ and Γ ¼ Δ.
Using J ðχÞ from Fig. 3(a), we select γ1 ¼ 0.45,

γ2 ¼ 0.40, and γ3 ¼ 0.15, and determine the corresponding
currents Jj in the φ2 − φ3 plane (φ1 ≡ 0) as plotted in
Figs. 3(d1)–3(d3). Notably, QPTs appear congruently at
ellipticlike lines dividing positive and negative values of Jj.
When changing n, only the ð∂χ=∂φjÞ function is updated,
so the current is replotted correspondingly. J ðχÞ has to be
recalculated only if U and/or Γ are changed.
The parameters of resulting device allow treating the

third terminal as its base, while J1 and −J2 are assigned to
represent the input and output current, respectively. The
selected signs reflect their directions according to Fig. 3(b).
Keeping first φ3 ¼ 0, the resulting current phase relation
(CPR) of −J2, shown in Fig. 3(c1), exhibits nodes at φ2 ¼
0; π in the first BZ and additional QPT points coinciding
with the ellipticlike transition lines of Fig. 3(d2). Increasing
φ3 up to π=2, the CPR is only modulated in phase (the
nodes shift) and amplitude. Finally, setting φ3 ¼ π forces
the device to reside exclusively in the singlet GS, which
significantly suppresses −J2, as seen in Fig. 3(c2). This
effectively switches off the three-terminal device, akin to a
SC-transistor effect.
More elaborate phase control is possible by sweeping φ2

and simultaneously adjusting φ3 ¼ φ2 þ ϕ. For ϕ ¼ π=2,
as depicted in Fig. 3(c3), the CPR is then tuned into a
directional regime with different positive and negative
critical currents. This results in a SC-diode effect with a
yield of ≈50%. We emphasize that CPR modulation and
diode effect are quite ubiquitous, while demonstrating the
transistor effect required a weakly coupled third terminal
and closed pockets of doublet GS pockets that form only
at γ3 ≈ 0.15.
Conclusions.—In this Letter, we explore n-terminal JJs

based on a single-level interacting quantum dot described
via SC-AIM. Our key insight is their analytic mapping onto
two-terminal junctions with symmetric couplings and
phase difference expressed via a single analytic quantity
χ. This facilitates the derivation of complete phase dia-
grams and associated Josephson currents, requiring only
universal values of critical χ� and the function J ðχÞ,
respectively. Geometric details, including the number of
leads, SC phases φj, and the distribution of total tunneling
strength Γ among the leads, are then fully encoded through
analytic functions. Importantly, our system supports high-
symmetry points, where doublet GS and finite energy band
crossing are protected, within a substantial region of
experimentally well-accessible coupling space unlike its
two-terminal counterpart. In addition, our research empha-
sizes the practical advantages of integrating three-terminal

quantum dot-based devices into Josephson junction circuits
to leverage their transistor or diode effects.
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