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The quantum spin hall (QSH) phase, also known as the 2D topological insulator, is characterized by
protected helical edge modes arising from time reversal symmetry. While initially proposed as band
insulators, this phase can also manifest in strongly correlated systems where conventional band theory fails.
To overcome the challenge of simulating this phase in realistic correlated models, we propose a novel
framework utilizing fermionic tensor network states. Our approach involves constructing a tensor
representation of the fixed-point wave function based on an exact solvable model, enabling us to derive
a set of tensor equations governing the transformation rules of local tensors under symmetry operations.
These tensor equations lead to the anomalous edge theory, which provides a comprehensive description of
the QSH phase. By solving these tensor equations, we obtain variational ansatz for the QSH phase, which
we subsequently verify its topological properties through numerical calculations. This method serves as an
initial step toward employing tensor algorithms to simulate the QSH phase in strongly correlated systems,
opening new avenues for investigating and understanding topological phenomena in complex materials.
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Introduction.—The discovery of the quantum spin Hall
(QSH) phase [1] has sparked research interest in studying
the interplay between symmetry and topology in quantum
materials [2,3]. Initially proposed as a topological band
insulator, the QSH phase is characterized by stable proper-
ties such as anomalous helical edge modes and topological
response to electromagnetic fields [4]. It has been found
that the QSH phase can also be realized as a Mott insulator
in strongly correlated systems, representing an example of
interacting fermionic symmetry-protected topological
(SPT) phases [5–18]. Solvable models based on commut-
ing-projector Hamiltonians have been used to construct
various interacting fermionic SPT phases, including the
QSH phase [19–24]. However, these models only provide
fixed-point wave functions and are hardly useful for
numerical simulations.
To construct generic variational wave functions beyond

the fixed point, we turn to fermionic tensor networks
[25–33]. Our strategy is presented as following. Motivated
by the interacting edge theory [34,35], we introduce the
fixed-point wave function proposed in Ref. [24]. We then
translate it to fermionic projected entangled-pair states
(fPEPS) representation, from which we derive a set of
tensor equations for symmetry actions on tensors. From
tensor equations, we obtain algebraic data characterizing
the anomalous edge theory of the QSH phase. Finally, we
apply our method to a spin-1=2 fermionic system on
honeycomb and square lattice: by listing and solving tensor
equations, we get variational ansatz for the QSH phase on
such systems. We further numerically extract nontrivial
many-body topological invariants [36,37] from these varia-
tional tensor wave functions.

The fixed-point wave function.—The QSH phase hosts
charge conservation symmetry nf and time reversal sym-
metry T , where

T 2 ¼ exp½iπnf�≡ F; T · nf · T −1 ¼ nf; ð1Þ

with F the fermion parity operator.
To gain insight into the interacting bulk wave function,

we initiate our exploration by examining its anomalous
edge states with interactions. These edge states manifest a
succinct representation using bosonization [38], and is
described by [34,35] (see Appendix A for details)

Ledge ¼
1

2π
∂xθ∂tϕ −

vF
4π

�
1

K
ð∂xθÞ2 þ Kð∂xϕÞ2

�

þ α cosð2θ − 2θ0Þ þ � � � ; ð2Þ

where ϕ and θ are conjugate fields, taking value in ½0; 2πÞ,
and K is the Luttinger parameter. Symmetry actions on θ
and ϕ read

UðφÞ∶ ϕ → ϕþ φ; θ → θ;

T ∶ ϕ → −ϕ; θ → θ þ π; i → −i; ð3Þ

which constrain possible scattering terms in Eq. (2).
As illustrated in Fig. 1, the anomalous properties of such

edge theory become apparent through its topological
defects. Specifically, its T domain wall, characterized by
a �π shift in θ, carries fractional � 1

2
Uð1Þ charge [39].
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We proceed by extending θ to bulk. The�π domain wall
at edge is identified as � 1

2
θ vortex, as shown in Fig. 1. The

half-charge at edge domain wall motivates a decorated
vortex picture [40,41]: each vortex carries fermion
nf ¼ nv, where nv is the vorticity. The T symmetry can
be recovered by proliferating vortices, with nf remaining
conserved throughout this process due to the conservation
of total vorticity.
Equipped with the decorated vortex picture, we intro-

duce the fixed-point wave function [24]. As in Fig. 2, we
consider a system with spin-1=2 fermions fσ’s at a
honeycomb lattice, and Ising spins jτi’s at the dual
triangular lattice, where σ; τ ¼ ↑=↓. T flips both spins:

T ∶ j↑i ↔ j↓i; fσ → σyσσ0fσ0 ; i → −i: ð4Þ

Here, jτi’s represent θ field, which rotate �π when
crossing an Ising domain wall along or against a directed
bond. For the arrow configuration in Fig. 2, an Ising
domain wall going through site ðr; u=vÞ leads to nv ¼ �1
at this site. To match nv, fermions at site ðr; u=vÞ are holes
or electrons. Therefore,

½nf; frs;σ� ¼ −ð−1Þsfrs;σ; ð5Þ

where ð−1Þs ¼ �1 for s ¼ u=v. The fermion spin is
enforced to follow the majority Ising spins at adjacent
plaquettes, as shown in Fig. 2. With such majority rule as
well as Eq. (4), one can check that

T jψci ¼ ð−1ÞNdwðcÞjψT ci; ð6Þ

where c labels an Ising spin configuration, jψci the
corresponding decorated fermion state, and Ndw the num-
ber of domain wall loops in c.
The fixed-point wave function is expressed as [24]

jΨi ¼
X
c

ΨðcÞjci ⊗ jψci; ð7Þ

where ΨðcÞ ¼ �1 satisfies ΨðcÞ ¼ ð−1ÞNdwðcÞΨðT cÞ [42].

Tensor network representation.—wConstructing varia-
tional wave functions beyond Eq. (7) is highly desirable for
practical purposes. We now present a comprehensive frame-
work based on fPEPS. These are constructed by fermionic
tensors, which are quantum states residing in the fermionic
tensor product (⊗f) of physical and internal legs. The legs
with inward and outward arrows correspond to fermionic
Hilbert spaces of ket and bra states, respectively. Fermionic
tensor contraction fTr are implemented by connecting out-
ward and inward internal legs, defined as

fTr½hij ⊗f jji� ¼ ð−ÞjijjjjfTr½jji ⊗f hij� ¼ δij; ð8Þ

where ð−1Þjij (jij ¼ 0=1) is the fermion parity of jii.
Physical wave functions are obtained by contracting all
internal legs. Site and bond tensors for fPEPSon honeycomb
lattice are drawn in Fig. 3, where all tensors are set to be
parity even in this Letter. More details about fPEPS are
represented in Sec. I of Supplemental Material (SM) [43].
Let us derive fPEPS representation of Eq. (7). Imposing

translational symmetry, we focus on local tensors in a

FIG. 2. Configuration of the QSH phase’s fixed-point wave
function. fσ occupy the honeycomb lattice, while jτi on the dual
lattice. Crossing an Ising domain wall along or against oriented
bonds of the dual lattice introduces a �π phase shift. Spins of
fermions adhere to the majority rule.

FIG. 1. Edge domain walls and bulk vortices of θ field with
fermion decoration.

FIG. 3. Site tensors T̂u;v and bond tensors B̂x;y;z. Physical spin-
1=2 fermions live at sites, while physical Ising spins live at bonds.
Internal legs are represented by triple lines. Lines on two sides are
internal Ising spins jτ0τ1Þ, whose order follows the dashed arcs.
The middle line is a spinless fermion c, where filled and empty
circles label filled and empty states.
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single unit cell, including site tensors T̂u;v and bond tensors
B̂x;y;z, as illustrated in Fig. 3. Physical fermions live at sites,
while two physical Ising spins live at two sides of bonds.
Ising spins within a plaquette are enforced to be the same,
effectively living at plaquette centers.
An internal leg ðsαÞ is depicted as a triple line, pointing

from site s to bond α, with the middle line a spinless fermion
mode cðsαÞ, and lines at sides Ising spins. Basis states are

ðc†ðsαÞÞnjτ0τ1ÞðsαÞ, where vacuum j0ÞðsαÞ is omitted for

brevity. τ0τ1 are ordered counterclockwise and clockwise
around the site u=v, as indicated by directed dashed arcs
in Fig. 3.
As spins are identical within a plaquette, an internal spin

state of a site tensor is jτ1τ2ÞðsxÞjτ2τ0ÞðsyÞjτ0τ1ÞðszÞ, which is
shortened as jτ0τ1τ2Þ. Site tensors for Eq. (7) are

T̂u ¼ j0i ⊗f

�j↑↑↑Þ þ j↓↓↓Þ�þ f†u;↑j0i ⊗f

�
c†ðuxÞj↑↑↓Þ þ c†ðuzÞj↑↓↑Þ þ c†ðuyÞj↓↑↑Þ

�
þ f†u;↓j0i ⊗f

�
−c†ðuyÞj↓↓↑Þ þ c†ðuxÞj↓↑↓Þ − c†ðuzÞj↑↓↓Þ

�
T̂v ¼ j0i ⊗f

�j↑↑↑Þ þ j↓↓↓Þ�þ f†v;↑j0i ⊗f

�
c†ðvyÞj↑↑↓Þ þ c†ðvxÞj↑↓↑Þ þ c†ðvzÞj↓↑↑Þ

�þ f†v;↓j0i
⊗f

�
c†ðvxÞj↓↓↑Þ − c†ðvzÞj↓↑↓Þ þ c†ðvyÞj↑↓↓Þ

�
: ð9Þ

Similarly, hτ0τ1j represents a bond spin state hτ0τ1jα ⊗
ðτ0τ1jðuαÞðτ1τ0jðvαÞ, and we have

B̂α ¼ h↑↑jα þ h↓↓jα þ h↓↑jα − h↑↓jαcðuαÞcðvαÞ: ð10Þ

As shown in Sec. II of SM [43], two T -related state from
contracting fPEPS satisfy Eq. (6), so it indeed gives the
same fixed-point wave function.
Tensor equations.—To proceed, we extract symmetry

action rules on internal legs for Eqs. (9) and (10), which pave
the way for wave functions beyond Eq. (7). We assume that
symmetries on physical legs can be pushed to gauge trans-
formation on internal legs [44]; see also SM [43].
One way to impose charge conservation is to set all

tensors charge neutral, which can be realized by assigning
cðsαÞ to carry charge ð−1Þ1−s. Note that fs;σ carries charge
ð−1Þs, and thus

�
nf;s þ

X
α¼x;y;z

nf;ðsαÞ

�
· T̂s ¼ B̂α ·

�X
s¼u;v

nf;ðsαÞ

�
¼ 0:

T action on ðsαÞ are set as

WðsαÞðT Þ¼ j↑↑ÞðsαÞð↓↓jðsαÞ þj↓↓ÞðsαÞð↑↑jðsαÞ
þ ic†ðsαÞj↑↓ÞðsαÞð↓↑jðsαÞ þj↓↑ÞðsαÞð↑↓jðsαÞcðsαÞ;

ð11Þ

which leads to following equations:

T̂s¼UsðT Þ⊗f WðsxÞðT Þ⊗f WðsyÞðT Þ⊗f WðszÞðT Þ · T̂�
s ;

B̂α¼Vðα0ÞðT Þ⊗f Vðα1ÞðT Þ · B̂�
α ·W−1

ðvαÞðT Þ⊗f W−1
ðuαÞðT Þ:

Here, UðT Þ and VðT Þ are T action on physical fermions
and Ising spins. We mention that, as WðT Þ’s are not parity

even, it may not give a symmetric wave function. In
SM [43] Sec. III, we show that the above equations contain
a hidden Kasteleyn orientation [19,20,45,46], which indeed
leads to a T -symmetric condition.
Besides the above physical symmetries, local tensors

also host a “gauge symmetry” due to identical internal spins
within a plaquette:

�
nλ;ðsα0Þ þ nλ;ðsα̃1Þ

�
· T̂s ¼ 0;

B̂α ·
�
nλ;ðuαaÞ þ nλ;ðvαaÞ

� ¼ 0; ð12Þ

where nλ;ðsαaÞ ¼ ð−1Þsþaj↓ih↓j with a ¼ 0=1 labeling two
side lines of ðsαÞ, and α̃≡ α − ð−1Þs. nλ’s action within a
plaquette p generates a Uð1Þ symmetry. We thus get
½Uð1Þ�Np symmetry, where Np is the number of plaquettes.
Note that such symmetry acts trivially on physical legs, and
is called “invariant gauge group” (IGG) [47–49], which is
essential for topological ordered phases [50] as well as SPT
phases [29,52,53].
Wenowextract relations betweennf,WðT Þ, andnλ, which

are coined as “tensor equations” in this Letter. Roughly
speaking, IGGgives possible actionof the identity element on
internal legs, and then symmetry on internal legs satisfy
Eq. (1) up to some IGG element [47–49]. From Eq. (11), the
commutator between nf and T on internal legs reads

WðsαÞðT Þ · nf;ðsαÞ ·W−1
ðsαÞðT Þ ¼ nf;ðsαÞ þ nD;ðsαÞ; ð13Þ

where

nD;ðsαÞ ¼ ð−1Þsðj↓↑ih↓↑j − j↑↓ih↑↓jÞ
¼ nλ;ðsα0Þ þ nλ;ðsα1Þ: ð14Þ

Physically, nD gives Uð1Þ gauge theory, but due to the
decomposition to nλ’s, such gauge theory is killed [54],
leading to short-range entangled phase [43].
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For group relation T 2 ¼ F, from Eqs. (11) and (14), we
have

exp

�
i
π

2
n2D;ðsαÞ

	
·WðsαÞðT Þ ·W�

ðsαÞðT Þ ¼ FðsαÞ; ð15Þ

which is distinct from a naïve insertion of an IGG element.
This is explained in detail in Sec. IVof SM [43].
The commutator betweenWðT Þ and nλ completes tensor

equations

WðsαÞðT Þ · n�λ;ðsαaÞ ·W−1
ðsαÞðT Þ ¼ −nλ;ðsαaÞ þ ð−Þsþa: ð16Þ

Edge theories from tensor equations.—In the following,
we show that anomalous properties of edge can be
extracted from Eq. (13) to Eq. (16).
We claim that edge anomaly can be detected through

fusion of T flux [55]. To see this, let us turn back to the
interacting edge theory in Eq. (2). T flux at x0;1 is created
by T action on x0 ≤ x ≤ x1 [56], which also rotates θðxÞ by
π within this segment (see Appendix A). Since j ¼ ∂tθ=2π,
a unit charge will be pumped from x0 to x1 by 2π rotation of
θ [57,58], which is interpreted as two T flux fuses to an
electron or hole.
We now extract such fusion rule from tensor equations.

As in Fig. 4, to obtain edge theory of system A, we cut
tensors within A from the infinite fPEPS, contract all
internal legs within A, and obtain a large tensor T̂A. T̂A
has L boundary legs labeled by index j∈ ∂A ¼
f1; 2;…; Lg, forming Hilbert space H∂A. As shown in
Sec. Vof SM [43], the edge Hilbert spacesHedge are formed
by states in H∂A that are invariant under IGG action. Let
Pedge be the projector from H∂A to Hedge. In our case, Pedge

identifies Ising spins belonging to the same plaquette:
τjþ1

4
¼ τjþ3

4
, where τj�1

4
are spins at boundary leg j.

By projecting W∂AðT Þ≡ ⊗f;j∈ ∂A WjðT Þ to Hedge, one
gets T action on edge

UedgeðT ÞK ¼ W∂AðT ÞK · Pedge: ð17Þ

Let M ¼ f2; 3;…; lg be a subregion of ∂A. T flux at ends
of M are created by a charge-neutral string operator
UMðT ÞK, where

UMðT ÞK ¼ Pedge · wlþ1 · w1 ·WMðT ÞK · Pedge: ð18Þ

Here, w1=ðlþ1Þ are local operators on leg 1=ðlþ 1Þ. The
charge-neutral requirement forUMðT ÞK puts the following
constraint on w1=ðlþ1Þ [43]:

½w1;nf;1�¼nð0Þ
λ;3

2

·w1; ½wlþ1;nf;lþ1�¼nð1Þ
λ;lþ1

2

·wlþ1; ð19Þ

with nð0=1Þλ;p IGG elements acting on


τp∓1

4

�
.

Let j ¼ 1 and lþ 1 be v site, then we have

w1 ¼
X
τ3
4

c1


τ3

4
;↓5

4

��
τ3
4
;↑5

4



þ

τ3
4
;↑5

4

��
τ3
4
;↓5

4



;

wlþ1 ¼
X
τ
lþ5

4

c†lþ1



↓lþ3
4
; τlþ5

4

��
↑lþ3

4
; τlþ5

4





þ

↑lþ3
4
; τlþ5

4

��
↓lþ3

4
; τlþ5

4



: ð20Þ

It is then straightforward to verify

½UMðT ÞK�2 ¼ Pedge ·Ω1 · Ωlþ1 ·
Yl
j¼2

Fj · Pedge; ð21Þ

where Ω1 ¼ c1 exp
�
iðπ=2Þ · nð0Þ

λ;3
2

�
is a hole, and Ωlþ1 ¼

c†lþ1 exp
�
iðπ=2Þ · nð1Þ

λ;lþ1
2

�
an electron (see details in SM,

Sec. VI [43]). We thus recover the anomalous properties of
edge, which suggests that any fPEPS that satisfies tensor
equations belongs to the QSH phase [59].
Variational tensor wave functions.—The fixed-point

wave function in Eq. (7) requires plaquette Ising spins,
which is unusual in realistic models. Here, we construct
variational tensor wave functions for spin-1=2 fermions on
a honeycomb lattice. We will further demonstrate these
wave functions belong to the QSH phase by calculating
many-body topological invariants in the next part.
We start from translational invariant honeycomb

fPEPS, whose site tensor is expressed as T̂s ¼ ðTsÞijk;p
jpisjiÞðsxÞjjÞðsyÞjkÞðszÞ, with s ¼ u=v labeling sublattices,
and ðsxÞ to ðszÞ labeling internal legs. Physical spin-1=2
fermions fsσ’s carry opposite charges on site u and v. For
simplicity, we choose basis states of an internal leg ðsαÞ to
be

�j↑↑ÞðsαÞ; c†ðsαÞj↑↓ÞðsαÞ; j↓↑ÞðsαÞ; j↓↓ÞðsαÞ�.
Action of T on physical legs follows Eq. (4).

Symmetries impose constraints on site tensor T̂s as

⊗
z

α¼xf
WðsαÞðT Þ ⊗f UsðT Þ · T̂�

s ¼ T̂s

�Xz

α¼x

nf;ðsαÞ þ nf;s

	
· T̂s ¼ 0: ð22Þ

FIG. 4. Left: tensor T̂A cutting from the infinite fPEPS, whose
boundary legs are numbered from 1 to L. Right: boundary leg j is
a triple line, representing two Ising spins (thick blue line) τj−1

4
and

τjþ1
4
, and one spinless fermion cj (thin orange line). Plaquettes

between j and jþ 1 are labeled as p ¼ jþ 1
2
.
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In addition, site tensors should also be invariant under
plaquette IGG nλ’s, as in Eq. (12).WðT Þ, nf, and nλ satisfy
tensor equations from Eqs. (13) to (16), and can simply take
the same form as in the previous example. By solving these
tensor constraints, we obtain seven linearly independent
solutions for T̂u=v, as listed in Appendix B. Bond tensors
are set to be Eq. (10), which satisfy all tensor equations
[43]. We also calculated the variational ansatz for system in
square lattice; see SM [43].
Many-body topological invariants.—The correlated

QSH wave function can be detected by the many-body
topological invariant proposed in Ref. [37]. The system is
put on a cylinder periodic in y direction and open in x
direction, which is divided as follows

The topological invariant is given by

Z ¼ Tr
�
ρþR1∪R3

CR1

T ðρ−R1∪R3
ÞT1 ½CR1

T �†� ð23Þ

with

ρ�R1∪R3
¼ TrR1∪R3

�
exp

�2πi
P

r∈R2
ynðrÞ

Ly
jΦihΦj

	
:

Here, T1 is the fermionic partial transpose of region R1, and
CR1

T is defined by CR1

T cj∈R1
ðCR1

T Þ† ¼ c†k∈R1
UðT Þkj. The

phase of Z takes value 0=π when jΦi represents a trivial or
topological insulator. This quantity is computed numeri-
cally, and certain outcomes are depicted in Fig. 5. Notably,
for local tensors that satisfy the tensor equations character-
izing the QSH phase, sgnðZÞ ¼ −1 is realized within a
finite parameter region. It is noteworthy that the occurrence
of sgnðZÞ ¼ 1 in other parameter regions may be attributed
to diverse factors, such as finite size effects. Further details
are provided in SM [43].
Discussion.—In this Letter, we extract tensor equations

from the fPEPS representation of the QSH fixed-point

wave function, as detailed in Eqs. (13) to (16). Through a
systematic solution of these tensor equations, we obtain
general forms for symmetry operations on the internal legs
of fPEPS. Utilizing the obtained symmetry constraints on the
local tensors, we construct generic variational tensor wave
functions for theQSHphase,which is verified by numerically
extracting topological invariants for many-body systems.
This Letter leaves several interesting future directions.

First, to express variational ansatz for topological phases in
half-filled spin-1=2 electronic models, it is necessary to
generalize our framework to include tensors with odd
parity. Additionally, developing variational numerical algo-
rithms for symmetric fPEPS wave functions obtained in
this Letter would be desirable to simulate the QSH phase in
strongly correlated models. On the analytical side, we aim
to explore other fermionic topological phases, such as
topological superconductors and topologically ordered
phases. Of particular interest is the investigation of chiral
phases, such as the pþ ip topological superconductor
[61–63]. The question of whether fPEPS can accurately
represent these chiral phases with a finite bulk gap remains
an intriguing puzzle [64–66]. Furthermore, tensor networks
readily incorporate spatial symmetries [48], enabling the
construction of variational tensor wave functions for
gapped electronic liquid phases and high-order topological
insulators or superconductors [67–69]. Exploring these
possibilities holds significant potential for advancing our
understanding of exotic topological phases.

We would like to thank Qing-Rui Wang and Xie Chen
for helpful discussions. The work is supported by MOST
No. 2022YFA1403902, NSFC No. 12104451, CAS under
Contract No. JZHKYPT-2021-08, and funds from Strategic
Priority Research Program of CAS (No. XDB28000000).

Appendix A: Interacting edge theory.—In the free
fermion case, the anomalous edge states of the QSH
phase are described by massless helical Dirac fermions:

Hedge ¼
Z

dxð−ivFÞ
�
ψ†
RðxÞ∂xψRðxÞ − ψ†

LðxÞ∂xψLðxÞ
�
;

where ψL=R is the left and right moving fermion mode,
and vF the fermion velocity. T acts as ψR=L → �iψL=R,
forbidding mass terms opening a gap.
The interacting edge theory can be analyzed by

the bosonization method [38]. Conjugate fields ϕðxÞ and
θðxÞ are introduced, both with periodicity 2π, where
½∂xθðxÞ;ϕðx0Þ� ¼ 2πiδðx − x0Þ. With these hydrodynamic
variables, ψR=LðxÞ ∼ exp½−ðiϕðxÞ � iθðxÞ=2Þ�, charge den-
sity δρðxÞ ¼ −∂xθðxÞ=2π, and current density jðxÞ ¼
∂tθðxÞ=2π. Symmetry actions on θ and ϕ listed in
Eq. (3) are derived from its action on ψR=L. Lagrangian
density for the interacting edge theory is [34,35]

1 1.5 2 2.5 3 3.5
-1

0

1

FIG. 5. Calculation of sgnðZÞ for ansatz of trivial or topological
insulators. Here, cu2 denotes some variational parameters for local
tensors, which satisfy tensor equations for the QSH phase. See
Appendix B for details. Sizes of R1;2;3 are set to be equal, with
length in x direction to be LR, and in y direction to be 2.
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Ledge ¼
1

2π
∂xθ∂tϕ −

vF
4π

�
1

K
ð∂xθÞ2 þ Kð∂xϕÞ2

�

þ α cosð2θ − 2θ0Þ; ðA1Þ
whereK is theLuttinger parameter, and for the noninteracting
case K ¼ 2. Because of Eq. (3), the leading relevant sym-
metric scattering term is α cosð2θ − 2θ0Þwith scaling dimen-
sion 2K. It becomes relevant when K < 1, driving edge to a
gapped phase. For the case where α > 0, such gapped phase
has doubly degenerate ground states, characterized by
hθi ¼ θ0 and hθi ¼ θ0 þ π, respectively, both minimizing
α cosð2θ − 2θ0Þ. The two ground states are exchanged under
T , and thus spontaneously break T symmetry.
Topological defects of this T -breaking phase host

anomalous properties. We consider a time reversal domain
wall at x0, with domains hθðx < x0 − ϵÞi ¼ θ0 and
hθðx > x0 þ ϵÞi ¼ θ0 þ π, as shown in Fig. 1. For region
ðx0 − ϵ; x0 þ ϵÞ, θ rotate clockwise or counterclockwise.
Such domain wall carries �1=2 charge [39], asZ

x0þϵ

x0−ϵ
dxδρðxÞ ¼

Z
x0þϵ

x0−ϵ
dx

�
−
∂xθðxÞ
2π

�
¼ � 1

2
: ðA2Þ

Appendix B: Numerical details.—Here, we present the
variation ansatz solved from Eq. (22) and used for
calculating the many-body topological invariant. The u=v-
sublattice variational site tensor T̂u=v ¼

P
l c

u=v
l tu=vl is a

linear combination of component tensors tu=vl , with real

coefficients cu=vl ’s. Component tensors are listed below:

Here, dashed legs are fermion parity odd. For the trivial
symmetric wave function used for benchmark, the first

component tensors for u=v sublattices are identical to tu1
and tv1 above. The others are listed below. The trivial
symmetric solutions are solved under the same constraints
as the QSH case, except Eq. (13). We show how to solve
these constraints in SM [43].
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