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The GW approximation is widely used for reliable and accurate modeling of single-particle excitations.
It also serves as a starting point for many theoretical methods, such as its use in the Bethe-Salpeter equation
(BSE) and dynamical mean-field theory. However, full-frequency GW calculations for large systems with
hundreds of atoms remain computationally challenging, even after years of efforts to reduce the prefactor
and improve scaling. We propose a method that reformulates the correlation part of the GW self-energy as a
resolvent of a Hermitian matrix, which can be efficiently and accurately computed using the standard
Lanczos method. This method enables full-frequency GW calculations of material systems with a few
hundred atoms on a single computing workstation. We further demonstrate the efficiency of the method by
calculating the defect-state energies of silicon quantum dots with diameters up to 4 nm and nearly 2,000
silicon atoms using only 20 computational nodes.
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As a first-principles approach based on many-body
perturbation theory, the GW approximation has been
successfully applied to accurately compute quasiparticle
excitation in weakly and moderately correlated materials
[1–3]. The approximation also plays an essential role in the
first-principles calculations of excitonic effects using the
GWþ BSE approach [4,5] and is used in conjunction with
other methods [6–11]. The computational scaling of differ-
ent implementations of the GWapproximation ranges from
OðNÞ to OðN6Þ and typically has a much larger prefactor
compared to density functional theory (DFT) calculations
with semilocal exchange-correlation functionals [12,13].
During the last decade, different formulations and

algorithms have been proposed and implemented for
accelerating GW calculations to meet the challenge of
modeling large and complex materials [12,13]. A few
seminal papers have demonstrated GW calculations of
quasiparticle energies of large systems with the number
of atoms ranging from 1,000 to around 2,700 [14–18].
These large-scale GW calculations rely on well-crafted
numerical optimization and large computation resources.
Even with notable advancements, GW calculations for
systems with a few hundred atoms, which are typically
required for computationally studying a point defect
in solids or small quantum dots, are not performed
commonly. Owing to the significant expense of data

curation, GW calculations are rarely used in wide-reaching
data-driven research, such as constructing large databases
of material properties and training supervised machine-
learning models.
In GW calculations, one of the most computationally

expensive steps is calculating the frequency-dependent
screened Coulomb potential W. In many implementations,
the irreducible polarizability function and then the inverse
dielectric function are calculated to compute W [19,20].
Such a procedure deals with the frequency dependence
of W using approximations like plasmon-pole models or
numerical tools such as contour deformation or analytical
continuations [12,21]. Alternatively, another approach
computes the reducible polarizability and W by solving
the Casida equation derived in linear-response time-depen-
dent density functional theory (TDDFT)[22–26]. Once all
the eigenvalues and eigenvectors of the Casida equation are
solved, the frequency-dependent W and GW quasiparticle
self-energies can be written and computed in a closed form
[23–25]. While this approach is formally simple and works
efficiently for small systems with less than 40 atoms, it
becomes numerically intractable for large systems due to
the high cost of solving the Casida equation.
Here, we propose a method that avoids solving the

Casida equation while still allowing us to perform full-
frequency GW calculations analytically and efficiently.
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To better illustrate the concept, we discuss our method
applied to finite systems, for which real-valued wave
functions and simplified notations can be used. We perform
DFT calculations to obtain Kohn-Sham orbitals jϕmi and
their corresponding energies ϵm, which are used as an initial
approximation for quasiparticle wave functions and ener-
gies, respectively. Next, the Casida equation can be con-
structed [22–24,26,27]:
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The dimension of matrices A and B is N2
vc, where Nvc ¼

Nv · Nc scales as OðN2Þ with respect to system size N.
Here Nv and Nc represent the number of occupied and
empty orbitals, respectively. With the random-phase
approximation (RPA) used in the GW approximation, the
matrix elements of A and B are given as

Avc;v0c0 ¼ ðϵc − ϵvÞδvv0δcc0 þ ðvcjv0c0Þ ð2Þ

Bvc;v0c0 ¼ ðvcjc0v0Þ

¼
Z Z

ϕvðrÞϕcðrÞϕc0 ðr0Þϕv0 ðr0Þ
jr − r0j d3rd3r0: ð3Þ

We use indices v and v0 for occupied states, c and c0 for
empty states, and k, l, n, and m for general orbitals,
respectively. For finite systems, the Casida equation can be
reformulated as a smaller eigenvalue problem [23,24],

CZs ¼ ZsΩ2
s ; ð4Þ

where C ¼ ðA −BÞ1=2ðAþBÞðA −BÞ1=2 is a symmetric
matrix of dimension N2

vc. After solving Eq. (4) for the
eigenpairs ðZs;Ω2

sÞ of C, one can compute the full-
frequency GW self-energy

hϕmjΣGWðωÞjϕmi ¼ Σex
mm þ Σcorr

mmðωÞ; ð5Þ
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where ηn is 1 for occupied orbitals and −1 for empty
orbitals, and δ is a positive infinitesimal number to avoid
singularity. The matrix elements Ws

nm are

Ws
nm ¼

X
vc

ðnmjvcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵc − ϵv
Ωs

r
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The exchange part of the self-energy Σex
mm is independent

of frequency and relatively easy to compute, while the

correlation part Σcorr
mmðωÞ includes the frequency-dependent

screening effects of dielectric responses. The poles of
frequency-dependent screened effects can be determined
by the eigenvalues ofC. As a result, the most expensive step
of the aforementioned method is diagonalizing the Casida
equation, as the computational cost scales as OðN6Þ. To
make further progress, we intend to avoid this costly step by
defining a vector jPnmi of dimension Nvc, which has
elements given by ðPnmÞvc ¼ ðnmjvcÞðϵc − ϵvÞ1=2. Then
Ws

nm becomes

Ws
nm ¼ hPnmjZsiΩ−1

2
s : ð9Þ

Σcorr
mm can be rewritten as

Σcorr
mmðωÞ ¼

XNvþNc

n¼1

Σcorr
mmðω; nÞ; ð10Þ

where

Σcorr
mmðω; nÞ ¼
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where zn ¼ ω − ϵn − iηnδ.
Examining Eq. (11), we note the formula for Σcorr

mmðω; nÞ
is similar to a general resolvent matrix element of the formP

kh⋆jkihkj⋆i=ðz − λkÞ ¼ h⋆j1=ðz −HÞj⋆i, whereH is a
general Hermitian matrix with eigenvalues λk and eigen-
vectors jki, z is a complex number, and j⋆i is a ket.
Motivated by this observation, we reformulate Eq. (11) as
the resolvent of a symmetric matrix D

Σcorr
mmðω; nÞ ¼

1

zn
hPnmj

1

D
−

1

Dþ ηnzn
jPnmi: ð12Þ

MatrixD satisfiesD2 ¼ C and its eigenvalues are the square
root of those of matrix C, i.e., DZs ¼ ZsΩs. We use a gth
degree polynomial functionpg to fit the square root function
pgðxÞ ¼

Pg
k¼0 akx

k ≈
ffiffiffi
x

p
within x∈ ½minΩ2

s ;maxΩ2
s �,

which is the range between minimum and maximum
eigenvalues of matrix C. Accordingly, D can be approxi-
mated by D ¼ pgðCÞ þ Δg ≈ pgðCÞ ¼ a0IþPg

k¼1 akC
k,

where I is an identity matrix and the fitting error Δg can be
controlled via the degree g of the polynomial function and
fitting procedures. More discussions on Eq. (10) to Eq. (12)
are presented in Sec. 1 of the Supplemental Material [28].
Given Eq. (12) and matrix D, the Lanczos method can

then be applied to efficiently compute the resolvent of
matrix D, which is an important step in calculating
Σcorr
mmðω; nÞ. In the calculation of Σcorr

mmðωÞ, we prepare
jPnmi for each state n in the summation of Eq. (10), where
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jPnmi is used as the starting vector for the Lanczos
tridiagonalization procedure of the symmetric matrix D.
With L steps of Lanczos iterations, one can construct a
tridiagonal matrix DL with dimension L in the following
form:

DL ¼

0
BBBBBBBBBB@

a0 b1 0 … 0 0

b1 a1 b2 … 0 0

0 b2 a2 … 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 … aL−1 bL
0 0 0 … bL aL

1
CCCCCCCCCCA
: ð13Þ

Once the tridiagonal matrix DL is obtained, a resolvent
matrix element [such as Eq. (12)] can be computed using
the continuous fraction

hPnmj
1

z −D
jPnmi ¼

1

z − a0 −
b2
1

z−a1−
b2
2

a2−…

; ð14Þ

which is also known as the Haydock method [29]. The
computation of Eq. (14) is efficient, and one can easily
calculate the quasiparticle energies for a series of frequen-
cies by varying z in Eq. (14). When applied to eigenvalue
problems, the Lanczos algorithm can lead to ghost eigen-
values. However, applying the Lanczos method to calculate
a resolvent is free of such a numerical problem [30].
There are several advantages to use the Lanczos method

for computing Σcorr
mm . Solving the eigenvalue problem of the

Casida matrix C is avoided, and the resulting full-
frequency GW calculations become more efficient than
the conventional method represented by Eq. (7), which
explicitly requires the eigenpairs of C. Frequency grids,
analytical continuation, and approximations like plasmon-
pole models are not required, as the frequency dependence
of W and Σcorr

mm are implicitly treated via Lanczos iterations.
Moreover, the method is in principle applicable to any basis
sets of wave functions, as our derivation does not rely on
any features of specific basis functions.
As a general-purpose algorithm, Lanczos-based methods

have been used in computational material science, such as
computing Green’s function [29], optical absorption spec-
tra with linear-response TDDFT [31–35], and the Bethe-
Salpeter equation [36]. Earlier work [37–39] applied
Lanczos methods for solving the Sternheimer equation
to obtain the frequency-dependent screened Coulomb
potential. Recently, several new methods [40–44] have
been explored to achieve efficient full-frequency GW
calculations. For example, Scott et al. [41] adopted a block
Lanczos algorithm to solve an effective Hamiltonian whose
eigenvalues systematically approximate the excitation

energies of GW theory. Bintrim and Berkelbach [40,45]
proposed a method that does not require integration over
the frequency grids. Instead, the GW quasiparticle energies
are obtained by solving the eigenvalues of an effective
Hamiltonian, which follows the algebraic diagrammatic
construction [46]. Compared to these methods, our method
does not solve the Sternheimer equation or obtain GW
quasiparticle energies from the eigenvalues of an effective
Hamiltonian. Instead, the frequency-dependent screened
Coulomb potential is found using linear-response TDDFT
within the Casida formalism, and the GW quasiparticle
energies are computed from a summation of resolvent
elements given by Eq. (12).
We checked the accuracy of theLanczos-basedmethod for

the GW approximation by calculating the highest occupied
and lowest unoccupied molecule orbital (HOMO and
LUMO) energies of the GW100 set [47–50], which include
100 small close-shell molecules for benchmarking different
implementations of the GW approximation. G0W0-level
calculations are carried out throughout this work. As studied
in previous work, G0W0-level calculations depend on the
starting point, while quasiparticle self-consistent GW
(QSGW) and fully self-consistent GW can alleviate the
dependence of calculation results on the starting points
[51–54]. Our new Lanczos method is compatible with
QSGW [55] because the accelerated steps (i.e., bypassing
the diagonalization of the Casida equation and using the
Lanczos method to compute the correlation part of the self-
energy) do not interfere with the self-consistent iterations.
The Lanczos method only requires the updated quasiparticle
energies and wave functions of the current iteration to start
the next iteration of GW calculation. A real-space-based
pseudopotential DFT code PARSEC is used in our imple-
mentation to efficiently obtain Kohn-Sham orbitals for large
finite systems [56,57]. More details of our computations are
presented in Sec. 2 of the Supplemental Material [28,58,59].
Figure 1(a) shows the results computed with the Lanczos
method and the reference method agree well for all GW100
molecules. The mean average difference (MAD) between
the results calculated using the reference method, which
finds the eigenpairs of the Casida equation explicitly, and
the Lanczos method is within 20 meV. Our tests also
show the Lanczos-based formalism converges fast to the
degree g of polynomial pg and the number of Lanczos
iterationsNiter. As shown in Figs. 1(b) and 1(c), the MAD is
below 30 meV when the polynomial degree g ≥ 8 and
Niter ≥ 5.
The computationally expensive steps in our method are:

(1) calculating electron-repulsion integrals ðkljnmÞ and
(2) calculating the matrix-vector product Dj⋆i, where j⋆i
is a general vector. One can use suitable low-rank approxi-
mation methods, such as resolution-of-identity or density-
fitting methods [60–62], to speed up these computations.
Density-fitting methods exploit the rank deficiency of
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orbital pair products ϕnðrÞϕmðrÞ and use a set of auxiliary
basis functions ζμðrÞ to fit these orbital pairs,

ϕnðrÞϕmðrÞ ≈
XNμ

μ¼1

ζμðrÞCμnm; ð15Þ

where the required number of auxiliary basis functions Nμ

for accurately representing the orbital pairs is expected to
be small and scale as OðNÞ and Cμnm are fitting coefficients.
With the approximation given in Eq. (15), one can calculate
integrals ðkljnmÞ, which contribute to the elements of C
and D, with the following equations:

ðkljnmÞ ≈
XNμ

α¼1

XNμ

β¼1

ðαjβÞCαklCβnm ð16Þ

ðαjβÞ ¼
Z

ζαðrÞζβðr0Þ
jr − r0j d3rd3r0: ð17Þ

These methods reduce four-center integrals to two-center
integrals and also factorize C and D as products of small

matrices to accelerate the matrix-vector products. Here we
used the interpolative separable density fitting (ISDF)
method to efficiently construct low-rank approximations
of orbital pairs [13,62,63]. Additionally, one can further
exploit the point-group symmetries to make the Casida
matrix C block diagonal and simplify the calculation of
matrix-vector products [64].
Combined with the ISDF method [13], our method is

efficient and enables large-scale G0W0 computations with
modest computing resources. To demonstrate the efficiency
of our method, we performed calculations for hydrogen-
passivated silicon clusters. Silicon clusters have attracted
research interest as prototypical semiconducting clusters
for studying the fundamental physical properties of zero-
dimensional systems [65] and their applications in many
fields [66–69]. Defects in passivated silicon nanocrystals
can introduce midgap defect levels as potential sources of
photoluminescence [70,71], while their electronic struc-
tures are rarely studied by GW calculations. We computed
the defect energy levels of charge-neutral silicon vacancies
in silicon clusters of different sizes. The ground state of a
silicon vacancy has zero net spin. Different from

FIG. 2. Evolution of “continuum” states and silicon-vacancy
defect states in different-sized silicon clusters.

(a)

niter = 8
polynomial degree: g = 8

(b)

(c)

niter=8

polynomial degree: g=8

niter

MAD = 30 meV

FIG. 1. (a) Comparison between the HOMO and LUMO
energies calculated with the reference method and the Lanczos
method. (b) The mean absolute differences (MADs) between the
quasiparticle energies of one hundred small molecules calculated
with the reference approach and the Lanczos method with
different degrees of polynomial functions. (c) MAD of quasi-
particle energies calculated with the reference method and the
Lanczos method using different numbers of iterations Niter.

TABLE I. The running time twall and the number of compute
nodes Nnode for calculating the GW quasiparticle energy of one
quasiparticle state. Each compute node has 64 cores and 4 graphic
processing units (GPU). twall includes the running time for
performing the ISDF method and computing ΣGWðωÞ using
the Lanczos method. Niter ¼ 8 and g ¼ 7 are used for Lanczos
iterations and polynomial functions, respectively.

Nanocluster Nv Nc þ Nv Nμ Nnode twall (hr)

Si86H76 210 1730 7000 1 0.02
Si274H172 634 5200 20 000 2 0.3
Si452H228 1018 8200 32 000 2 0.7
Si656H300 1462 12 000 48 000 2 1.5
Si1522H524 3306 27 000 108 000 10 8.5
Si1947H604 4196 33 400 133 600 20 9.2
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nanodiamondoids, where surface states are located in the
gap, the surface states of silicon nanoclusters are mixed
with continuum states and the midgap states originate from
defects. In the single-particle level, an occupied singlet and
a pair of unoccupied doubly degenerate defect states are
located inside the gap [72]. As shown in Fig. 2, when the
size of silicon clusters increases, the energies of defect
states evolve at a similar rate as the continuum states. For
the Si1522H524 cluster, the band gap of continuum states is
around 2.3 eV, still far from the bulk silicon band gap of
1.1 eV. We also computed the HOMO-LUMO gap of
nondefective silicon nanocrystals, and our results agree
well with previous calculations [37,73] (see Sec. 3 in the
Supplemental Material [28] for more details).
The main calculation parameters and required compu-

tation resources for these calculations are shown in Table I.
Notably, only two computing nodes are required for
Si656H300. For the largest system, Si1953H604 with a diam-
eter of around 4 nm, we used 20 nodes to accomplish the
full-frequency GW calculation. The computational cost of
our algorithm has a theoretical scaling of OðN4Þ. In the
benchmarks of silicon clusters, we observe a practical
scaling of roughly OðN2.3Þ for systems with less than 600
silicon atoms (see Sec. 4 of the Supplemental Material [28]
for a detailed analysis of the computational costs). As
shown in Fig. 3, we compared the running time for full-
frequency GW calculations of Si453H228 using different
numbers of nodes. For our Lanczos-based method, the most
time-consuming steps are matrix-matrix and matrix-vector
multiplications, which are suitable for massive paralleliza-
tion and acceleration with GPUs in heterogeneous super-
computers. Figure 3 demonstrates the reasonably good
strong scaling with computation resources. When the
calculations are accelerated with GPUs, the speed-up
factors compared to CPU-only calculations are around 20.
In summary, a full-frequency GW formalism based on a

Lanczos method is proposed to realize efficient modeling

of hundreds of atoms with modest resources. This method
can be used for highly efficient full-frequency GW calcu-
lations of large finite systems, such as semiconductor
quantum dots and ligand-protected superatomic clusters
with a few hundred atoms. Our method can also facilitate
the construction of computational databases with quasi-
particle-energy data, which were challenging to accomplish
with limited computational costs before. This method is
ready to generalize to extended systems, for which com-
plex-valued wave functions are required. If the Tamm-
Dancoff approximation is used (i.e., setting matrix B ¼ 0
in the RPA Casida matrix) for extended systems, then the
calculation is greatly simplified as only a Hermitian matrix
A remains, and a standard Lanczos algorithm for the
Hermitian matrix can be used. On the other hand, if
RPA is used, then a Lanczos-based method designed for
pseudo-Hermitian matrices [34,36,74] can be adopted.
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