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A droplet depositing on a solid substrate leads to the wetting phenomenon, such as dew on plant leaves.
On an ideally smooth substrate, the classic Young’s law has been employed to describe the wetting effect.
However, no real substrate is ideally smooth at the microscale. Given this fact, we introduce a surface
composition concept to scrutinize the wetting mechanism via considering the liquid-gas density asymmetry
and the fluid-solid van der Waals interaction. The current concept enables one to comprehend
counterintuitive phenomenon of contact-angle hysteresis on a smooth substrate and increase of contact
angle with temperature as well as gas bubble wetting.
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When a droplet is deposited on a solid substrate, an
apparent contact angle θ (cf. Fig. 1) is formed at the
equilibrium state [1]. This phenomenon is broadly observed
in daily lives, e.g., dew on leaves, and in industrial
applications, such as inkjet printing. On an ideally smooth
substrate, the apparent contact angle θ is unique according
to Young’s theory [2], known as Young’s law. Young’s
theory has been widely applied to interpret a variety of
wetting effect in physics, chemistry, biology, materials, and
many other interdisciplinary topics [3–7]. However, in
reality, there is no rigorous smooth homogeneous surface,
leading to the deviation of the real contact angle from
Young’s prediction as well as the so-called contact-angle
hysteresis [8], corresponding to multiple energy minima of
the system [9–11]. The complexities of the contact-angle
hysteresis [12] and the related mysterious mechanisms give
rise to a big challenge for cognition of the wetting
phenomenon and its applications.
To understand the wetting effect on a realistic surface, a

number of quintessential theories have been developed
[7,13–15]. One well-known theory is the Cassie-Wenzel

theory [16–18], providing a correction to Young’s predic-
tion when macroscopic surface roughness affects the
effective contact area between the solid and the fluids.
In most existing theories, the contact-angle hysteresis is
attributed to macroscopic roughness [19–21]. However,
it has been observed in experiments that contact-angle
hysteresis can occur on a smooth homogeneous substrate
[22–24] and even appears on a liquid surface [25], where
there is no macroscopic roughness. These experimental

(a) (b)

FIG. 1. (a) Sketch for the surface composition concept when a
liquid droplet (L) is deposited on a solid substrate (S) in a gas
phase (G). The average volume fraction of the liquid species
penetrating into solid at the microscale is denoted by ϕ. Between
the dashed lines: L-G diffuse interface. Gray, solid; cyan, water;
orange, gas. (b) Schematic sectional view in the cylinder
coordinate ðr;φ; zÞ.
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observations seem to be counterintuitive and fall out of the
scope of Young’s and Cassie-Wenzel theory.
In this Letter, we introduce an alternative concept of

surface composition to scrutinize the wetting effect. The
present concept is based on the question that up to which
length scale the surface is not rough. As sketched in Fig. 1,
we consider a droplet on top of a solid substrate with an
apparent contact angle θ (see Refs. [26,27] for the termi-
nology, such as apparent, advancing, receding, micro-
scopic, and macroscopic contact angles). The liquid, gas,
and solid phases are denoted by L, G, and S, respectively.
At the microscale, nothing is really smooth; we propose
that the liquid and gas phases partially penetrate into the
solid phase. We denote the average volume fraction of the
liquid phase penetrating into S as ϕðxÞ; ∀ x∈ S.
For a given droplet volume V, the total interfacial energy

consists of the droplet cap
R
A σdA and the substrateR

SðγL − γGÞdSþ C, where C is an arbitrary reference
constant depending on the surface area of the substrate.
The parameters σ, γL, and γG denote the L-G, L-S,
and S-G interfacial tensions, respectively. By defining
Δγ ¼ γG − γL, we express the system interfacial energy
in the cylinder coordinate ðr;φ; zÞ as [28]
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where hðrÞ stands for the distance of the L-G interface to
the substrate and rc represents the base radius (Fig. 1). The
gravity effect may be added to the system energy in Eq. (1);
as demonstrated in Ref. [29], the equilibrium contact angle
is not modified for fluids with a uniform density and free-
slip triple junction [30]. In contrast to the previous
assumption of constant interfacial energies, γG; γL ¼ const,
we here introduce a wall free energy density function
γðϕÞ as

γ ¼ l
�
pLϕþpGð1−ϕÞ þ χϕð1−ϕÞ þ χLϕþ χGð1−ϕÞ�:

The expression of the wall free energy is motivated by the
phase-field concept [32–35] based on Cahn’s theory [31],
wherein the free energy density consists of a bulk term γðϕÞ
and a gradient energy term τð∇ϕÞ2 [36–40]. The first two
terms account for the internal energy with pL ¼ ρLϵL
and pG ¼ ρGϵG following the formulation of van der
Waals [41], where ϵi (i ¼ L, G) is the internal energy
per unit mass. The third term denotes the short-range van
der Waals interaction between liquid and gas, as in the
Flory-Huggins model [42–45]. The Flory parameter χ
describes the intermolecular potential. The last two terms
depict the van der Waals interaction of S-L and S-G,
respectively. The parameter l depicts the penetration depth
of fluids into the solid [cf. Fig. 1(a)].

The necessary equilibrium condition ∂rcE ¼ 0 engenders
the well-known Young’s law for the contact angle

σ cos θ ¼ γG − γL: ð2Þ

Substituting the Young’s equation into the energy function
of Eq. (1) subject to the volume constraint V ¼ ðπ=3Þ
ðrc= sin θÞ3ð2þ cos θÞð1 − cos θÞ2, we obtain the total
interfacial energy of the system as

E
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Noteworthily, the equilibrium contact angle still follows
Eq. (2) to account for the Young’s contact angle, but γL and
γG are no longer constants but depend on ϕ. The equilib-
rium state is obtained via analyzing the energy landscape
EðϕL;ϕGÞ through the principle of energy minimization

�
minEðϕL;ϕGÞj0 ≤ ϕL ≤ 1; 0 ≤ ϕG ≤ 1

�
:

By varying ϕL and ϕG in the function domain
Λ ¼ fðϕL;ϕGÞj0 ≤ ϕL ≤ 1; 0 ≤ ϕG ≤ 1g, we obtain a cen-
tral finding of this work, the energy landscape EðϕL;ϕGÞ,
as shown in Fig. 2. Rewriting the wall free energy
function as

γ

lχ
¼ −ϕ2 þ

	

1 −
ðpG − pLÞ − ðχL − χGÞ

χ




ϕþ pG þ χG
χ

;

we comprehend the energy landscape as a result of three
forces: (F1) pressure force, Δp ¼ pG − pL, which is due
to the density asymmetry; (F2) van der Waals forces,
Δχ ¼ χL − χG, which determine the wettability of the
system when the densities of the two immiscible fluids
are almost the same, namely, hydrophilicity when Δχ < 0
and hydrophobicity whenΔχ > 0; (F3) L-G intermolecular
force χ, which establishes the L-G interface. According to
the ratio of these three forces, we divide the wetting effect
into three categories, (a), (b), and (c).
Type (a): χ < Δp − Δχ.—The inequity indicates that

the L-G intermolecular force is less than the pressure force
minus the van der Waals force, which can be further
divided into two subtypes: (a)(i): χ < χG − χL, where the
two immiscible fluids have almost the same density.
This case is the most considered in the literature for
modeling a superhydrophilic surface. An example is the
water-oil system. (a)(ii): χ < Δp − Δχ, the pressure
force due to the density difference competing with the
van der Waals force. An example is the water-air system.
Figure 2(a)(i) shows an exemplary energy landscape for
ðΔp − ΔχÞ=χ ¼ 2. The equilibrium contact angle accord-
ing to Eq. (2) is depicted in Fig. 2(a)(ii). As observed in
Fig. 2(a)(i), there is only a local minimum at ϕL ¼ 1 and
ϕG ¼ 0 in the energy landscape; the contact angle is zero at
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the energy minimum state. Suffice to say, type (a) corre-
sponds to superhydrophilic wetting.
Type (b): χ ≥ Δp − Δχ.—In contrast to a single energy

minimum in type (a), in this case, we observe two local
energy minima with distinct contact angles θ1 and θ2, as
demonstrated in Fig. 2(b) with ðΔp − ΔχÞ=χ ¼ 0.5. The
difference of these two contact angles leads to a nonzero
contact-angle hysteresis (CAH), resulting from the com-
peting effect of density ratio, van der Waals interaction, and
intermolecular potential. An increase in the density ratio
ρL=ρG can enhance the CAH. An example for the density
variation due to gravity and the change of the contact angle
has been recently shown by Tan, An, and Ohl [46].
However, the density distribution is unknown; type
(b) wetting can be used to explain some counterintuitive
experimental observations of nonzero CAH on a macro-
scopically smooth substrate [22].
Type (c): χ ≫ Δp − Δχ, which is a special case

of type (b).—By setting ðΔp − ΔχÞ=χ ¼ 0, the energy
landscape and the corresponding contact angle are shown
in Figs. 2(c)(i) and 2(c)(ii), respectively. In this case, the
energy landscape becomes symmetric. As in type (b), two
local minima also occur in the energy landscape. Differing
from type (b), the two contact angles at the energy

minimum state are identical, indicating that there is no
CAH, namely, Δθ ¼ 0°.
Next, we quantify the contact angle and the CAH as a

function of the intermolecular potential χ, the pressure
force Δp, and the van der Waals force Δχ. The energy
minimum state is obtained via solving the equation system
consisting of E1 and E2, which is defined as E1:
∂E=∂ϕG ¼ 0, E2: ∂E=∂ϕL ¼ 0 and leads to the following
closed forms for the apparent contact angles:

cos θ1 ¼ ϱ

�

1 −
Δp − Δχ

χ

�
2

; ð4Þ

cos θ2 ¼ ϱ

�

1þ Δp − Δχ
χ

�
2

; ð5Þ

where the scaling factor ϱ ¼ lχ=4σ is a material parameter
relating to the penetration depth l of the fluid in the solid,
the liquid-gas surface tension σ, and the Flory parameter χ
of liquid-gas. The contact angles θ1 and θ2 as a function of
the ratio of ðΔp − ΔχÞ=χ are shown in Fig. 3(a) for three
exemplary scaling factors, ϱ ¼ 1, 0.5, and 0.25 due to the
variation of the Gibbs dividing surface [47,48]. We present
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FIG. 2. Energy landscape EðϕL;ϕGÞ (top) and the map of the Young’s contact angle θðϕL;ϕGÞ (bottom) for three types of wetting,
classified as (a), (b), and (c). In type (a), there is only a local minimum in the energy landscape (i) and the contact angle at the minimum
state is zero (ii). In types (b) and (c), two local minima appear in the energy landscape, resulting in two Young’s contact angles θ1 and θ2.
The parameters in (a), (b), and (c) are ðΔp − ΔχÞ=χ ¼ 2, 0.5, and 0, respectively. The contact angle is calculated according to the
Young’s equation with ϱ ¼ 1.

PHYSICAL REVIEW LETTERS 132, 126202 (2024)

126202-3



the following remarks and highlights for the results shown
in Fig. 3.
(I) Wettability.—By varying the ratio ðΔp − ΔχÞ=χ

between −1 and 1, we obtain all the hydrophobic setup
with contact angles between 0° and 90° for both θ1 and θ2.
The contact angle of 0° and 90° corresponds to the limiting
case, jðΔp − ΔχÞ=χj ≥ 1. For jðΔp − ΔχÞ=χj > 1, the
description of the wetting effect via contact angle loses
its validity; the wetting state in this case has to be
characterized by the energy map presented in Fig. 2.

The hydrophobic setup is realized by replacing θi with π −
θi (i ¼ 1, 2) in Eqs. (4) and (5) and θ with π − θ in Eq. (2).
The energy landscape can be obtained accordingly by
replacing ðγL − γGÞ=σ with ðγG − γLÞ=σ in Eq. (3).
(II) Roughness effect.—For a fixed value of

ðΔp − ΔχÞ=χ, we always have a nonzero CAH except
whenΔp ¼ Δχ where the two curves of θ1 and θ2 intersect.
This result can be used to support counterintuitive experi-
mental observation that a nonzero CAH occurs on a
smooth substrate [22]. The CAH can be characterized by
cos θ2 − cos θ1 ¼ 4ϱðΔp − ΔχÞ=χ. It should be remarked
that the present CAH can be magnified by the macroscopic
roughness, as demonstrated in Fig. 3(b). Here, we adopt the
Cassie-Wenzel (CW) theory [17,18] to account for the
macroscopic roughness via

cos θi;Wenzel ¼ ϒ cos θi; i ¼ 1; 2;

cos θi;Cassie ¼ Φ cos θi − ð1 −ΦÞ; i ¼ 1; 2;

where ϒ is the roughness factor and Φ denotes the contact
fraction of solid-liquid beneath the droplet. From the
comparative study in Fig. 3(b), we see that, for each
contact angle θi, the CW theory can lead to CAH (dotted
and dashed lines). However, if we compare the Wenzel
curve for θ2 and the Cassie curve for θ1, we see that the
macroroughness enhances the CAH (ΔθCW, gray arrows),
but the origin of CAH (Δθ, black arrows) is the micro-
roughness. The same conclusion can be drawn when
comparing the Cassie curve for θ2 and Wenzel curve for θ1.
(III) Gas bubble wetting.—From Young’s law,

cos θ ¼ γG − γL, the contact angle of π − θ is also an
energy minimum state, with cosðπ − θÞ ¼ γL − γG, where
π − θ is the apparent contact angle of a gas bubble.
Apparently, the summation of π − θ1 with θ2 or π − θ2
with θ1 is not 180°. This result can be used to comprehend
the experimental observation of gas bubble wetting [49,50]
and the related CAH [51]. The different wetting behavior of
the droplet and gas bubble is attributed to the density
asymmetry.
(IV) Temperature effect.—The contact angle θ1

increases with ðΔp − ΔχÞ=χ, while θ2 decreases with
ðΔp − ΔχÞ=χ. This result can be used to explain experi-
mental observation that the contact angle sometimes
increases with temperature [52,53] and sometimes
decreases with temperature [54,55]. Assuming that
ðΔp − ΔχÞ=χ increases with temperature, we have the
decrease of θ2 with temperature till zero; the other one
θ1 must increase with temperature. The decrease of the
contact angle with temperature till zero is consistent with
Cahn’s wetting transition theory [31] and Adamson’s
adsorption theory [56]. The increase of the contact angle
with temperature is counterintuitive and can be well
explained by the present results. Note that advancing
and receding contact angles both can increase with

(a)

(b)

(c)

FIG. 3. Contact angle. (a) The contact angle θ1 (cyan) and θ2
(orange) as a function of the ratio ðΔp − ΔχÞ=χ for different
scaling factors, ϱ ¼ 1, 0.5, and 0.25. Stars: numerical simulation
of the phase-field model. The labels (i), (ii), and (iii) highlight the
setups for the simulation in (c). (b) Comparison with the Cassie-
Wenzel theory for ϱ ¼ 0.25. The roughness factor ϒ in the
Wenzel equation and the parameter Φ in the Cassie equation are
set to be 1.2 and 0.8, respectively. (c) Simulation results for θ1
(cyan) and θ2 (orange) with ðΔp − ΔχÞ=χ ¼ −1 (i), −0.5 (ii), and
0 (iii) when ϱ ¼ 0.25.
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temperature, which correspond to the region ðΔp −
ΔχÞ=χ > 0 and ðΔp − ΔχÞ=χ < 0, respectively.
In addition, we employ phase-field simulation to support

the variation of the contact angle with ðΔp − ΔχÞ=χ, as
shown in Fig. 3(c). The model is well established and
validated for various wetting phenomena [28,57]. By fixing
the droplet volume and using the interfacial energy at the
energy minimal state, we observe the advancing and
receding contact angles [Fig. 3(c)(ii)]. The simulation
result supports the theoretical calculation quantitatively
that there are two distinct contact angles for a fixed droplet
volume.
The above derivation assumes that the solid surface is

rigorously inert and does not move in space and with time,
both microscopically and macroscopically. This treatment
is in contrast to a more physically reasonable concept
of surface adaptation, as proposed by Butt [58] and
Tadmor [59]. When the fluid contacts the solid, the solid
reorients, deforms, and swells at the microscale [58,59] and
can even protrude to the liquid [60]. By considering surface
adaptation, we extend the above derivation into two cases.
Case A: static wetting. When the solid is reconstructed
microscopically, we consider the change of the solid
composition and the modified wall free energy function:
γs=l ¼ P

i piϕi þ
P

i<j χijϕiϕj, where ϕi (i ¼ S, L, G)
stands for the volume concentration of the ith component,
pi is the internal energy, and χij characterizes the binary
van der Waals interaction. Case A is further divided into
two subcategories: (A)(i) The volume fraction of the solid
phase is a constant less than but very close to 1. Following
the same derivation procedure for Eqs. (4) and (5) withP

i¼G;L ϕi ¼ 1, we obtain the modified contact angles θ�1
and θ�2 with the correction for the contribution of the van der
Waals force: Δχ� ¼ ϕSðχL − χGÞ. This result shows reduc-
tion consistency with Eqs. (4) and (5) when ϕS ¼ 1 for a
rigorously inert solid surface. (A)(ii) The volume fraction
of the solid phase is a free parameter, which can lead to
macroscopic topological changes [61], like liquid lens, as
comprehensively considered in Ref. [47], which is beyond
the scope of the current work. (B) Dynamic wetting with
contact angle ϑ. For relatively small velocity, the contact
angle is assumed to follow Young’s law at every time step.
By applying Butt’s adaptive wetting theory [12,58,62,63]
with time relaxation for the interfacial energies, we obtain
cosϑa ¼ cos θ�1 − ωae−t=τa and cosϑr ¼ cos θ�1 þ ωre−t=τr .
A similar formulation can be applied for θ�2. Here, ωa=r

and τa=r are fitting parameters according to experiments.
Note that θ�1 and θ�2 can be interchanged depending
on the advancing and receding properties, in contrast to
a unique Young’s contact angle in Butt’s theory. For
relatively large velocity, fluid dynamics has to be taken
into account [64–66].
In summary, we have introduced a surface composition

concept based on that no substrate is ideally smooth at the
microscale. A central finding is the multiple energy minima

in the surface energy landscape and the resulting contact-
angle hysteresis. We consider the competing effect of
density ratio Δp, van der Waals interaction Δχ, and
intermolecule potential χ, leading to a generalized equation
of Young’s law as

cos θ1;2 ¼ ϱ
�
1� ðΔp − ΔχÞ=χ�2: ð6Þ

The scaling factor ϱ is related to the liquid-gas surface
tension σ and the penetration depth l of fluid into the solid
at the microscale. This result can be further coupled with
Butt’s adaptation wetting theory [12,58,62,63]. The present
concept can be used to interpret counterintuitive physical
phenomenon, such as CAH on a relatively smooth substrate
and increase of contact angle with temperature. Moreover,
the present work can cope with the knotty wetting
phenomenon of a gas bubble.

This research is supported by VirtMat project “VirtMat
P09: Wetting Phenomena” of the Helmholtz association, as
part of the program “MSE-materials science and engineer-
ing” No. 43.31.01. F. W. is grateful for the discussion with
Mr. H. Zhang.

*fei.wang@kit.edu
[1] P.-G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
[2] T. Young, Phil. Trans. R. Soc. London 95, 65 (1805).
[3] H. Lambley, G. Graeber, R. Vogt, L. C. Gaugler, E.

Baumann, T. M. Schutzius, and D. Poulikakos, Nat. Phys.
19, 649 (2023).

[4] Z. Cheng, D. Zhang, X. Luo, H. Lai, Y. Liu, and L. Jiang,
Adv. Mater. 33, 2001718 (2021).

[5] M. Li, C. Li, B. R. Blackman, and S. Eduardo, Int. Mater.
Rev. 67, 658 (2022).

[6] S. Herminghaus, M. Brinkmann, and R. Seemann, Annu.
Rev. Mater. Res. 38, 101 (2008).

[7] F. Wang, Y. Wu, and B. Nestler, Adv. Mater. 35, 2210745
(2023).

[8] E. Y. Bormashenko, Wetting of Real Surfaces (de Gruyter,
Berlin, 2018), Vol. 19.

[9] A. Marmur, Adv. Colloid Interface Sci. 50, 121 (1994).
[10] S. Brandon and A. Marmur, J. Colloid Interface Sci. 183,

351 (1996).
[11] A. Marmur, Colloids Interfaces 6, 39 (2022).
[12] H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I.

Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen et al.,
Curr. Opin. Colloid Interface Sci. 59, 101574 (2022).

[13] R. Tadmor, Langmuir 37, 6357 (2021).
[14] L. Makkonen, J. Chem. Phys. 147, 064703 (2017).
[15] C. Semprebon, G. McHale, and H. Kusumaatmaja, Soft

Matter 13, 101 (2017).
[16] E. Bormashenko, Adv. Colloid Interface Sci. 222, 92

(2015).
[17] R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).
[18] A. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944).
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