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The optical Darboux transformer for solitons is introduced as a photonic device that performs the
Darboux transformation directly in the optical domain. This enables two major advances for optical signal
processing based on the nonlinear Fourier transform: (i) the multiplexing of solitonic waveforms
corresponding to different discrete eigenvalues of the Zakharov-Shabat system, and (ii) the selective
filtering of an arbitrary number of individual solitons too. The optical Darboux transformer can be built
using existing commercially available photonic technology components and constitutes a universal tool for
signal processing, optical communications, optical rogue waves generation, and waveform shaping and
control in the nonlinear Fourier domain.
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The concept of optical soliton was proposed 50 years ago
as a temporally localized light pulse having hyperbolic
secant shape and being invariant upon spatial propagation.
This pulse is the analytical solution to the nonlinear
Schrödinger equation (NLSE) describing the evolution of
the electric field slowly varying envelope along a single
mode optical fiber [1]. Most importantly, Zakharov and
Shabat in their seminal paper of 1972 [2], showed how to
obtain bright soliton solutions to the NLSE using the
mathematical technique called inverse scattering transform
(IST) [3,4]. Given a particular complex waveform qðtÞ,
function of time t, from the solutions of the Zakharov-
Shabat system—a system of two coupled linear equations
which depend on q—it is possible to define a nonlinear
spectrum of the waveform. This nonlinear spectrum con-
sists in general of a set of discrete points (denoted by
eigenvalues λi) in the complex half-plane—each of them
corresponding to a soliton—and of a continuous part QðλÞ
(being λ a spectral parameter performing a role analogous to
frequency), which is associated to dispersive waves. The
latter tends to the classical Fourier spectrum in the low signal
power limit [5]. The nonlinear spectrum provides a set of
orthogonal nonlinear eigenmodes that are invariant—except
for a trivial phase rotation—upon propagation and constitute
a complete basis for the description of a given signal [6].
Solving the Zakharov-Shabat system for signal qðtÞ and
finding the associated nonlinear spectrum, consists in
performing the nonlinear Fourier transform (NFT) of qðtÞ.
In the decades following the pioneering contributions by

Hasegawa and Tappert and by Zakharov and Shabat,
substantial research on optical solitons has taken place
both from a mathematical [3,7] and from a physics and
engineering perspective too [8,9]. Optical solitons have
been used in commercially deployed optical communica-
tion systems and their concept has been generalized to
encompass robust localized solutions existing in dissipative

systems too—nonintegrable by the IST—thanks to a
balance between nonlinearity, dispersion gain, or injection
and losses [10]. In this broader sense dissipative optical
solitons are a cornerstone of modern laser mode-locking
[11], and a workhorse for optical frequency combs gen-
eration in nonlinear driven optical resonators [12]. In recent
years, building on the concept of eigenvalue communica-
tions proposed by Hasegawa and Nyu [13,14], a novel
paradigm for soliton based optical communication systems
in fibers has emerged. This approach aims at encoding
information in the discrete spectrum eigenvalues (solitons
and their phases) and in the continuous spectrum [5,15–19].
Further to that, NFT has been suggested as well as a
powerful tool for the analysis of optical signals generated
by dissipative optical devices like mode-locked lasers
[20,21] and optical resonators [22,23]. This is enabled
by the fact that the nonlinear spectrum—the union of the
continuous and discrete parts—of a given function provides
a complete basis for the description of signals with
vanishing boundary conditions at t → �∞ [5,6]. Hence
one can project a signal on the nonlinear spectrum basis
obtaining its decomposition in terms of solitons and
continuous spectrum and then compute new NFTs after
the signal has evolved, monitoring in this fashion the
nonlinear spectral changes associated also with consequent
creation and annihilation of spectral components. This
mathematical basis featuring discrete eigenvalues proves
advantageous for following the evolution of coherent
structures embedded inside a complex waveform. Indeed
via its discrete spectral points, NFT enables the description
of localized structures using individual eigenvalues, hence
condensing the key information in a reduced number of
degrees of freedom (pulse peak, temporal position, velocity,
and phase) compared to a multifrequency classical Fourier
spectrum.
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Despite these recent advances, NFT applications in
photonics remain very much a technology in its infancy,
suffering from limitations ranging from poor algorithmic
performances for computing the nonlinear spectrum to the
lack of optical domain nonlinear signal processing tech-
niques. For instance, apparently simple problems such as
(i) how to optically combine different waveforms contain-
ing multiple solitons so that the novel waveform contains
exactly the solitons present into the two original signals, or
(ii) how to optically eject or filter individual solitons from a
signal without irreversibly destroying the whole waveform,
remained unsolved so far. This is rooted in the qualitatively
different nonlinear physics of solitons compared to the
linear principles which inspire the customary approach to
signal processing. For instance, a traditional optical filter is
not able to discriminate between a soliton and the con-
tinuous spectrum; nor simply coherently combining a
soliton with a signal waveform using, for instance, an
optical coupler will add a discrete eigenvalue to the
nonlinear spectrum of the signal.
To address these fundamental limitations we present here

a novel device based on the optical implementation of a
mathematical operation called the Darboux transformation
(DT), which enables optical multiplexing of solitons to an
existing waveform—including in presence of continuous
spectrum—and selective removal of optical solitons from a
signal too, without undesired effects on the waveform
spectral properties. Mathematically the DT is transforma-
tion which takes as an input a solution to the NLSE and a
new discrete spectrum eigenvalue, providing as an output a
new solution to the NLSE having the same nonlinear
spectrum as the input one plus the new discrete eigenvalue
[17,24,25]. The DT offers a simple and iterative procedure
to build multisoliton solutions to the NLSE and its
generalized forms. For this reason DT has been widely
used in NFT based optical communication systems to
digitally generate multisoliton signals both in single
[17,18,25–27] and dual-polarization regimes [19,28]; and
for finding rogue waves solutions [29]. However, in the
examples reported so far its implementation does not occur
in the optical domain. The DT is iteratively calculated
digitally until a waveform qðtÞ featuring the desired non-
linear spectrum is obtained. Then the function qðtÞ is
transferred from the electrical to the optical domain by
means of a wave form generator and an optical modulator
that suitably modifies a laser beam. This poses a funda-
mental limitation to solitonic waveform signal processing
and, namely, the necessity of completely passing from the
optical to the electrical domain and then back to the optical
one every time one needs to manipulate a signal, e.g., for
multiplexing, demultiplexing, regeneration, and noise fil-
tering. To the best of our knowledge no optical implemen-
tation of the DT has been proposed so far. The goal of this

Letter is to introduce a method for performing the DT
optically, and to practically answer the question: how can
one selectively add and remove discrete eigenvalues from
an optical signal without undesired effects on the spectral
properties of the signal itself?
First, we need to briefly introduce the known DT

formalism for the nonlinear Schrödinger equation (NLSE)
[27]. Let us consider a given signal qðz; tÞ whose propa-
gation along spatial coordinate z is ruled by the focusing
normalized NLSE:

∂q
∂z

¼ i
∂
2q
∂t2

þ 2ijqj2q: ð1Þ

The normalised amplitude, spatial, and temporal coordi-
nates are related to physical fiber and electric field para-
meters by the following relations: q ¼ E=

ffiffiffiffi
P

p
, t ¼ τ=T0,

and z ¼ −Z=L; where E is the electric field slowly varying
envelope in units

ffiffiffiffiffi
W

p
, P ¼ jβ2j=ðγT2

0Þ, L ¼ 2T2
0=jβ2j, β2

is the group velocity dispersion in ps2 km−1, γ is the
nonlinearity coefficient in km−1 W−1, τ is a the temporal
coordinate in a reference frame comoving with the pulse, Z
is the spatial coordinate along the fiber in physical units,
and T0 is a free normalization parameter. Starting from the
knowledge of qðtÞ it is possible to obtain a new solution to
the NLSE q̃ that features the same discrete spectrum as q
plus a new soliton described by the discrete eigenvalue λ0.
If q had a nonvanishing continuous spectrum QcðλÞ then q̃
has a continuous spectrum given by Q̃cðλÞ ¼ ½ðλ − λ�0Þ=
ðλ − λ0Þ�QcðλÞ. The new solution is defined by

q̃ðtÞ ¼ qðtÞ þ 2iðλ�0 − λ0Þ
v�2v1

jv1j2 þ jv2j2
; ð2Þ

which is the DT. v1ðtÞ and v2ðtÞ are the two components of
the vector v ¼ ðv1; v2ÞT which is a solution to the
Zakharov-Shabat system for the signal qðtÞ. The vector

ṽ ¼ ðλ0I2 −G0Þv ð3Þ

is instead the solution to the Zakharov-Shabat system for
signal q̃; being I2 the 2 × 2 identity matrix and G0 ¼
ΘM0Θ−1 with M0 ¼ diagðλ0; λ�0Þ and

Θ ¼
�
v1 v�2
v2 −v�1

�
: ð4Þ

Now we generalize the DT to the case when a signal q̃ is
generated starting from the vacuum solution q ¼ 0 [or from
a solution having no discrete spectrum but instead con-
tinuum spectrum QcðλÞ], and features n discrete eigenval-
ues fλ1;…; λng which are iteratively added to the spectrum
of q. This is naturally achieved by iterating n times the
procedure highlighted in Eq. (2). We have

PHYSICAL REVIEW LETTERS 132, 123801 (2024)

123801-2



q̃ðtÞ ¼ qðtÞ þ
Xn
i¼1

Di; ð5Þ

where Di ¼ 2iðλ�i − λiÞ½vðiÞ�2 vðiÞ1 =ðjvðiÞ1 j2 þ jvðiÞ2 j2Þ� with the
precaution that for every λi added in the iterative process,

the functions vðkÞ1;2 associated with the remaining—yet to be
added—eigenvalues λk (k ¼ iþ 1;…; n) have to be
updated as follows:

 
ṽðkÞ1

ṽðkÞ2

!
¼ ðλkI2 −GoiÞ…ðλkI2 −G01Þ

�
AðkÞe−iλkt

BðkÞeiλkt

�
ð6Þ

being the matrix G0i computed as a function of vðiÞ1;2
evaluated after i − 1 iterations of the DT. It can be
furthermore shown that if one wants to generate a signal
featuring n eigenvalues fλ1; ::λng corresponding to solitons
having spectral amplitudes determined by the spectral
coefficients fb1;…bng, then the initialization of the coef-
ficients should be as follows: AðiÞ ¼ 1 and BðiÞ ¼ bi [27].
Note also that if q is not the vacuum solution but it has a
continuous spectrum QcðλÞ, then one should initialize the
iterative DTalgorithm with signal q0 (instead of q), with the
spectrum Q0

cðλÞ ¼ QcðλÞ
Q

n
i¼1½ðλ − λiÞ=ðλ − λ�i Þ� if one

wants to have q̃ with continuous spectrum Qc [27].
Based on the known formalism for the iterative addition

of individual eigenvalues we can hence proceed to define
the explicit expression for the DT associated to the addition
of multiple eigenvalues to a signal q− by coherently
combining it with a suitable single auxiliary signal qaux.
We notice that we can always write Eq. (5) as

qþ ¼ q− þ qaux; ð7Þ

where q− is a signal featuring a certain continuous spectrum
Q−ðλÞ and a discrete spectrumwith fλ1;…; λmg eigenvalues
and spectral amplitudes fb1;…; bmg; while qaux is an auxi-
liary signal such that qþ features fλ1;…; λm; λmþ1;…; λng
eigenvalues with spectral amplitudes fb1;…; bm; bmþ1;
…; bng. In particular

qaux ¼
Xn

i¼mþ1

Di ð8Þ

provided that the functions vðkÞ1;2 (k ¼ mþ 1;…; n)—which
determine Di—have been calculated according to Eq. (6)
keeping into account that the transformation operated on them
is a function also of the eignevalues of q−, fλ1;…; λmg. It
follows that adding eigenvalues fλmþ1;…; λng to the spec-
trum of q− requires simply coherently combining the wave-
forms q− and qaux. We can hence consider a device,
schematically illustrated in Fig. 1, that we call the optical
Darboux transformer (ODT) for solitons, which can be built

using a 50=50 optical coupler, a phase shifter, and an
optical amplifier. In the eigenvalue multiplexing operational
regime, the input at port 1 of the coupler is q− while the input
at port 2 is qaux after being phase shifted by −π=2 radians.
In this way the output of port 3 reads q3 ¼ ð1= ffiffiffi

2
p Þq− þ

ið1= ffiffiffi
2

p Þð−iqauxÞ and after amplification by a factor of 2 for
power (

ffiffiffi
2

p
for amplitude) corresponding to ≈3 dB gain,

results indeed in qout ¼
ffiffiffi
2

p
q3 ¼ qþ which has eigenvalues

fλ1;…; λng. It is easy to notice that theODTcan operate as an
NFT filter too, which removes eigenvalues fλmþ1;…; λng
from the spectrum fλ1;…; λng of the signal qþ. In that case
we call qþ the input signal entering from port 1 of the 50=50
coupler while the phase shifter is set to provide a þπ=2
radians phase shift to qaux. The output of port 3 after
the amplifier in this case reads q3 ¼

ffiffiffi
2

p �ð1= ffiffiffi
2

p Þqþþ
ið1= ffiffiffi

2
p ÞðiqauxÞ

� ¼ q−, which has discrete spectrum
fλ1;…; λmg. Interestingly, the possibility of using the DT
to iteratively remove single eigenvalues form the nonlinear
discrete spectrum has been suggested mathematically [30]
and explored for developing efficient algorithms for NFT
based optical communication systems digital data processing
[31]. We also stress the fact that the operations described
above, both concerning the multiplexing and the filtering of
eigenvalues, arenot equivalent to simply coherently adding or
subtracting, to a given signal, an auxiliary signal containing
hyperbolic secant waveforms having the eigenvalues one
wishes to add or remove to/from the signal nonlinear
spectrum. As it can be appreciated from examples reported
below,qaux exhibits in general amuch richer spectrum. Indeed
the NFT operation N ½·� is nonlinear, namely, in general
N ½q1� þN ½q2� ≠ N ½q1 þ q2�. This nonlinearity is also a
reasonwhy an amplifier is needed at the coupler port 3 output,
indeed, unless the signal power is very lowN ½aq1� ≠ aN ½q1�

FIG. 1. Schematic of the optical Darboux tansformer. In the
multiplexer mode the signal q− (with spectrum featuring 2
discrete eigenvalues) is combined at a 50=50 coupler with the
auxiliary signal qaux phase shifted by −π=2. In the filter mode the
input signal is instead qþ, featuring three spectral eigenvalues,
and is combined with qaux phase shifted by π=2. The output from
port 3 is amplified with 3 dB gain by an optical amplifier (red
triangle) and results in signal qout featuring a new eigenvalue with
respect to q− (in purple), or has one eigenvalue removed with
respect to qþ (white circle) depending on the filter or multi-
plexing operational mode.
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with a a constant. In Figs. 2(a)–2(c) an example is shown of
theODTworking as amultiplexer andperformingde facto the
function of a single soliton creation operator which adds one
eigenvalue to the input signal spectrum. In Figs. 2(d)–2(f)
instead an example is shown of the ODTacting as a filter, by
performing the role of a single soliton annihilation operator,
and removing an eigenvalue from the input signal spectrum.

In both cases input, output, and auxiliary signals and the
respective discrete eigenvalue spectrum are shown. It is
interesting to notice that the auxiliary signal qaux features,
besides a solitonic spectrum, a nonvanishing continuous
spectrum too, while q� do not. In Fig. 3 it is furthermore
shown how the ODT can simultaneously add or remove
multiple eigenvalues to or from the spectrum. Finally in Fig. 4
an example is shown where the ODT adds or removes an
eigenvalue to or from an input signal featuring a nonvanishing
continuous spectrum too [32].
The simple architecture of the proposed device can be

realized using existing commercially available optical fiber
technology components like couplers, phase shifters, and
amplifiers such as Erbium-doped fiber ones. The auxiliary
signal qaux can be synthesized using a waveform generator,
a laser, and a modulator, while its necessary temporal
synchronisation with the input waveform could be
achieved, for instance, exploiting techniques used for signal
synchronization in time-division multiplexing for optical
communications [34]. In case the input signal to be
processed is not known a priori, information about its
nonlinear spectrum can be obtained from detecting and
analyzing a small portion of it before it enters the ODT, in
order to synthesize a suitable qaux for the desired multi-
plexing or filtering operation. The ODT presented in this
Letter can find natural generalization to the dual polariza-
tion case (Manakov system) too. This can be implemented,
for instance, using a first polarizing beam splitter directing
each polarization to a different ODT, and a second one for

(b)

(d) (e) (f)

(a) (c)

FIG. 2. Single eigenvalue addition and filtering. In the multi-
plexer mode the waveforms, discrete, and continuous spectrum
are shown in panels (a)–(c) for input, output and auxiliary signal
(see legend): the input signal q− features spectrum fλ1 ¼ 1þ
0.5i; λ2 ¼ 0.8ig with spectral coefficients fb1 ¼ 5; b2 ¼ 0.5g
while the output qþ features the same eigenvalues plus the extra
eigenvalue λ3 ¼ 1þ iwith b3 ¼ −1. The filter mode is illustrated
in panels (d)–(f): from the input signal qþ with spectrum fλ1 ¼
−0.3þ i; λ2 ¼ 0.5ig and fb1 ¼ 1; b2 ¼ 0.8g the eigenvalue λ2 is
removed.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Eigenvalues multiplexing and filtering in presence of
continuous spectrum. In panels (a)–(c) the multiplexing
case is shown for input signal q− featuring discrete spectrum
fλ1 ¼ ig with fb1 ¼ 3g, and continuous spectrum QðλÞ ¼
A=ðiλÞe−2iλtd�1 − ðΔ=iλÞ cotðΔTÞ�−1 with ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAj2 þ λ2
p

, A ¼ 0.5,
td ¼ 6, T ¼ 1. The ODT output provides signal qþ featuring
the additional eigenvalue fλ2 ¼ −1þ 1.5ig with fb2 ¼ −4g.
In (d)–(f) a scenario is shown where input signal qþ, featuring
discrete spectrum fλ1¼i;λ2¼2þ1.5ig with fb1¼2;b2¼−1g,
and continuous spectrum QfðλÞ¼

Q
2
i¼1½ðλ−λiÞ=ðλ−λ�i Þ�QmðλÞ,

is transformed into the new signal q− differing by eigenvalue
fλ2 ¼ 2þ 1.5ig with fb2 ¼ −1g.

(a) (b) (c)

(e) (f)(d)

FIG. 3. Multiple eigenvalues addition and filtering. Multiple
eigenvalues addition is shown in panels (a)–(c) for the input
signal q− having spectrum fλ1 ¼ 0.3þ i; λ2 ¼ 0.3ig with
fb1 ¼ 5; b2 ¼ 0.5g, where the ODT adds to it the following
additional eigenvalues fλ3 ¼ 1þ 2i; λ4 ¼ 0.5i; λ5 ¼ 0.1ig with
fb3 ¼ −1; b4 ¼ 2; b5 ¼ 0.1g. Multiple eigenvalues filtering is
shown in panels (d)–(f). Input signal qþ has spectrum fλ1¼
i;λ2¼1.5i;λ3¼0.5i;λ4¼4i;λ5¼2þig with fb1 ¼ 1; b2 ¼ 0.2;
b3 ¼ −2; b4 ¼ 3; b5 ¼ 1g, and eigenvalues λ3, λ4, and λ5 have
been removed.
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recombining the two polarizations after solitonic waveform
processing (additional amplifiers could be employed where
needed to compensate for power losses).
It is important to stress a vital point. A distinctive

conceptual feature of soliton filtering and soliton multi-
plexing in the nonlinear Fourier domain is indeed the
necessity of embedding a knowledge of the signal to be
filtered or multiplexed in the filter or multiplexer itself. This
is at variance with the operational principle of some
traditional linear optical components such as standard
optical filters that do not require any information about
the input signal. Similar paradigm changes, despite cer-
tainly appearing surprising for a way of thinking that is
used to conceptualize the world based on a linear approach,
are required when developing a truly nonlinear scientific
Weltanschauung—worldview—, and a nonlinear technol-
ogy too.
The ODT may find several applications in optical soliton

technology. The possibility of optically controlling and
manipulating solitonic waveforms, including adding and
removing solitons from an optical signal or separating the
continuous from the discrete spectrum, or filtering noise,
are only some of the simplest and most obvious function-
alities within reach. Among its broader applications the
ODT could furthermore enable manipulation of the stat-
istical properties of an optical soliton gas [35–38] both
through its filtering and multiplexing functionalities. It
could provide as well a novel tool for NFT-based analysis
and control of the solitonic content of optical waves
generated by lasers [20,21], both as an intracavity compo-
nent and as an out-of-cavity optical signal processing tool
too. The proposed ODT, due to its potential cascadability
and scalability could constitute an elementary component
in more complex nonlinear Fourier domain signal process-
ing and manipulation devices. To conclude, we have
demonstrated the possibility of an optical domain imple-
mentation of the DT for the NLSE by means of a simple
photonic architecture. The ODT offers control over soli-
tonic waveforms by enabling selective discrete eigenvalues
multiplexing and filtering. Further to that, by reducing the
need of intermediate electrical and digital domain oper-
ations, the proposed device provides an advance towards
optical signal processing in the nonlinear Fourier domain.
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