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We investigate the impact of nonreciprocity on universality and critical phenomena in open quantum
interacting many-body systems. Nonreciprocal open quantum systems often have an exotic spectral
sensitivity to boundary conditions, known as the Liouvillian skin effect (LSE). By considering an open
quantumXXZ spin chain that exhibits LSE,we demonstrate the existence of a universal scaling regime that is
not affected by the presence of the LSE. We resolve the critical exponents, which differ from those of free
fermions, via tensor network methods and demonstrate that observables exhibit a universal scaling collapse,
irrespective of the reciprocity.We find that the LSE only becomes relevant when a healing length scale ξheal at
the system’s edge (which is different from the localization length of the eigenstate of the Liouvillian) exceeds
the system size, allowing edge properties to dominate the physics.We expect this result to be a generic feature
of nonreciprocal models in the vicinity of a critical point. The driven-dissipative quantum criticality we
observe has no classical analog and stems from the existence of multiple dark states.
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Introduction.—Universality in nonequilibrium systems
can be seen in numerous phenomena ranging from directed
percolation [1], flocking [2–4], Kardar-Parisi-Zhang phys-
ics [5] observed in various platforms [6–16], and nonrecip-
rocal phase transitions [17–23]. Recent advances in open
quantum systems offer an exciting avenue for extending this
concept. This is exemplified by criticality in non-Hermitian
systems [24,25], open quantum systems [19,20,26–46], and
measurement-induced phase transitions [47,48]. Engineered
nonreciprocal couplings provide a promising direction for
furthering these investigations. A number of platforms
[49–55], including an optomechanical circuit [49] and cold
atoms [50,54], have demonstrated that asymmetric (nonre-
ciprocal) transport can be engineered [56–68]. Surprisingly,
the spectrum of a system of particles hopping asymmetri-
cally on a lattice exhibits extreme sensitivity to changes in
the boundary conditions, known as the non-Hermitian skin
effect [69–82] or Liouvillian skin effect (LSE) in the context
of open quantum systems [57,63,66–68]. As spectral prop-
erties are usually a key element in determining the behavior
of observables, one might expect that the presence of the
LSE drastically alters the physics and hence the universal
features (as was indeed shown in several works [63,68,83]).
In this Letter, we introduce a nonreciprocal open

quantum spin system that exhibits universal properties that
are unaffected by the LSE. For equilibrium critical phe-
nomena, generic observables follow a universal power law
as a function of the distance to the critical point jT − Tcj
(e.g., CV ∼ jT − Tcj−α, where CV is the specific heat and α
is a critical exponent). This Letter considers an analogous
situation in a nonreciprocal open quantum spin system

exhibiting a quantum critical point. As the parameter Γ
controlling the distance to the critical point is reduced, we
observe universal behavior (e.g.,M ∼ Γα þ const, whereM
is the magnetization) that is independent of the strength of
the nonreciprocity, contrary to the expectation given by a
strong spectral sensitivity to boundary conditions.
Quantum criticality is demonstrated by the scaling collapse
of observables, which exhibit the same critical exponents
across various microscopic parameters. The resolved criti-
cal exponents differ from free systems, which we attribute
to many-body interaction effects. We find that the LSE only
impacts the bulk physics in the regime where the healing
length ξheal at the edge of the system (that diverges at the
critical point Γ → 0) exceeds the size of the system. This
length scale ξheal is different from the localization scale of
the eigenmodes of the Liouvillian [65]. We expect LSE-
independent universality to be generic for nonreciprocal
systems near a critical point.
Critical dynamics with nonreciprocity.—To study the

effect of nonreciprocity on universality, we consider a
quantum spin system whose interactions are reservoir-
engineered to be nonreciprocal. The evolution of the
system’s density matrix ρ̂ in the presence of Markovian
dissipation obeys the Lindblad master equation [84]

dρ̂ðtÞ
dt

¼ L½ρ̂� ¼ −i½Ĥ; ρ̂ðtÞ� þ
X
j

D̂j½ρ̂ðtÞ�; ð1Þ

with dissipators D̂j½·� ¼ L̂j½·�L̂†
j − 1

2
fL̂†

j L̂j; ½·�g at site j.
We solve Eq. (1) using time-evolving block decimation
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(TEBD) [85–87]; see Supplemental Material (SM) [88] for
details and Refs. [96–107] for examples of tensor networks
applied to open quantum systems. We focus on the
paradigmatic quantum XXZ spin Hamiltonian

Ĥ ¼ J
X
j

�
1

2
ðŜ−j Ŝþjþ1 þ Ŝþj Ŝ

−
jþ1Þ þ ΔŜzjŜ

z
jþ1

�
; ð2Þ

where J and Δ are the exchange interaction and anisotropy,
respectively. The spin-1=2 operators obey ½Ŝai ; Ŝbj � ¼
iδijϵabcj Ŝcj , and we set ℏ ¼ 1. To study the nonreciprocal
interaction effects, we use the dissipator

L̂l
j ¼

ffiffiffi
κ

p �
Ŝ−j þ eiϕŜ−jþ1

�
: ð3Þ

In the SM [88], we provide a concrete proposal for
implementing this correlated dissipation in a trapped ions
platform using dissipative Aharanov-Bohm rings [56,108],
utilizing recent experimental advances [109–111]. It
becomes clear that the dissipator (3) gives rise to a
nonreciprocal interaction [Fig. 1(a)] by considering the
conditional Hamiltonian, Ĥcd ¼ Ĥ − ði=2ÞPj L̂

l†
j L̂

l
j, gov-

erning the evolution in the absence of quantum jumps:

Ĥcd ¼
X
j

Jþ
2
Ŝ−j Ŝ

þ
jþ1 þ

J−
2
Ŝþj Ŝ

−
jþ1 þ JΔŜzjŜ

z
jþ1 − iκŜþj Ŝ

−
j ;

where J� ¼ J − ie∓iϕκ. The phase factor eiϕ in Eq. (3)
therefore controls the nonreciprocity of interactions between
nearest neighbor sites. The conditional Hamiltonian is
similar to the non-Hermitian XXZ model considered in
Ref. [112]. We stress, however, that we will investigate the
unconditional dynamics including the effects of quan-
tum jumps.
Figure 1(b) [Fig. 1(c)] demonstrates the anticipated

nonreciprocal (reciprocal) transport of a spin excitation
for ϕ ¼ −π=2 (ϕ ¼ 0). Here, the spatial magnetization
profile Szj ¼ hŜzji is plotted (with an offset for the ease of
visibility), computed with open boundary conditions
(OBC). A spectral sensitivity to boundary conditions
(i.e., LSE [57,63]) in the nonreciprocal case is also
observed [see insets of Figs. 1(b) and 1(c)], as expected.
Interestingly, the relaxation of the system is far slower

than the scales set by OðJ−1Þ and Oðκ−1Þ and is, in fact,
algebraic (see Fig. 4), indicating that the system is critical.
The slow relaxation occurs due to the presence of a dark
state other than the all down state j⇓i ¼ Q

j j↓ij. To see
this, let us temporarily assume a periodic boundary con-
dition (PBC) and Fourier transform the dissipation terms in
the Lindblad equation (1), giving

X
j

D̂j½ρ̂� ¼
X
k

κðkÞ
�
Ŝ−k ρ̂Ŝ

þ
k −

1

2
fŜþk Ŝ−k ; ρ̂g

�
; ð4Þ

where κðkÞ ¼ 2κð1þ cosðkþ ϕÞÞ. Since the dissipator
Eq. (3) involves only spin flips from up to down, the
system trivially possesses a dark state with all spins down
j⇓i, i.e., L½j⇓ih⇓j� ¼ 0. Notice, however, that the dis-
sipation vanishes at k ¼ k� ¼ π − ϕ. This implies that a
state jDki≡ Ŝþk j⇓i does not experience any dissipation
at k ¼ k�, where the operator Ŝþk ¼ ð1= ffiffiffiffi

L
p ÞPL

j¼1 e
ikjŜþj

creates a spin-wave mode with momentum k. It can readily
be shown that this is simultaneously an eigenstate of the
Hamiltonian Eq. (2), which is a consequence of U(1)
symmetry, making it a dark state L½jDk� ihDk� j� ¼ 0 [88].
For k very close to but not exactly at k ¼ k�, jDki
experiences a vanishingly small (but finite) dissipation
rate [114]. This implies that the characteristic timescale of
the dissipation is divergent in the thermodynamic limit,
meaning that the dynamics are critical, in agreement with
Figs. 1(b) and 1(c).
The numerical results in Figs. 1(b) and 1(c) are obtained

with OBC, while Eq. (4) is obtained under PBC. The two
results are consistent with each other, despite the presence
(absence) of the gap in the Liouvillian spectrum for
OBC (PBC) [see Figs. 1(b) and 1(c) insets], because the
local spin excitation will not know about the boundary
conditions until they propagate or diffuse to hit the
boundary [65,67]. This provides a key intuition: the
spectral sensitivity to boundary conditions does not nec-
essarily imply the sensitivity for observables.

(a)

(c)(b)

FIG. 1. (a) Left: two quantum spins coupled to a bath with
coupling strength κ. The bath acts on the spins as L̂l

j ¼ffiffiffi
κ

p ðŜ−j þ eiϕŜ−jþ1Þ. Right: the phase eiϕ causes interference that
results in an effective system of nonreciprocally interacting spins
and additional local on-site baths. (b) Relaxation of magnetiza-
tion from the initial state with a single up spin in the center of the
chain for a nonreciprocal (ϕ ¼ −π=2) XX spin chain (Δ ¼ 0)
with open boundary conditions. (c) The same for the reciprocal
case (ϕ ¼ 0). Insets: the spectrum λ of the Liouvillian L in the
single-magnon sector for periodic and open boundary conditions.
We set J=κ ¼ 1 [113].

PHYSICAL REVIEW LETTERS 132, 120401 (2024)

120401-2



In addition to the above-introduced engineered loss
[Eq. (3)], we further add a uniform gain to the system,
L̂g
j ¼

ffiffiffi
Γ

p
Ŝþj [115]. This term invalidates the discussion

above, introducing an additional timescale OðΓ−1Þ to the
system. Therefore, Γ acts as a parameter that controls
the distance from the critical point. Remarkably, despite the
spectral sensitivity in the nonreciprocal case, which persists
even for finite Γ (see SM [88]), we will show that
nonreciprocal and reciprocal systems display identical
universal properties in asymptotic regimes.
It is instructive to compare this model to a similar

nonreciprocal free fermion model studied in Refs. [57,64,65]

Ĥ0 ¼
X
j

J
2
ðĉ†j ĉjþ1 þ ĉ†jþ1ĉjÞ; L̂l0

j ¼ ffiffiffi
κ

p ðĉj þ eiϕĉjþ1Þ;

ð5Þ

and L̂g0
j ¼ ffiffiffi

Γ
p

ĉ†j , where ĉj is a fermionic annihilation

operator satisfying fĉi; ĉ†jg¼δij, and fĉ†i ; ĉ†jg¼fci;cjg¼0.

The conditional Hamiltonian Ĥ0
cd ¼ Ĥ0 − ði=2ÞPj L̂

l0†
j L̂l0

j

for this model (Γ ¼ 0 for simplicity) is given by the so-called
Hatano-Nelson model [116,117],

Ĥ0
cd ¼

X
j

Jþ
2
ĉ†jþ1ĉj þ

J−
2
ĉþj ĉjþ1 − iκn̂j; ð6Þ

where n̂j ¼ ĉ†j ĉj is the density operator. Equation (6)
describes asymmetric hopping with an additional imaginary
term. A more direct comparison to our spin model
can be made by performing the Jordan-Wigner transforma-

tion [118] for OBC, defined as Ŝþj ¼ e−iπ
P

j−1
i

ĉ†i ĉi ĉ†j ,

Ŝ−j ¼ eiπ
P

j−1
i

ĉ†i ĉi ĉj, Ŝzj ¼ n̂j − 1
2
. The jump operator (3)

and conditional Hamiltonian then take the form

L̂l
j ¼

ffiffiffi
κ

p �
eiπ

P
j−1
i

ĉ†i ĉi ĉj þ eiϕeiπ
P

j
i
ĉ†i ĉi ĉjþ1

�
; ð7Þ

Ĥcd ¼ Ĥ0
cd þ JΔ

�
n̂jn̂jþ1 − n̂j þ

1

4

�
; ð8Þ

where one sees that Ĥcd is given by the Hatano-Nelson
model (6) extended to have nearest-neighbor interactions,
suggesting that the free fermion model [Eq. (5)]
can be regarded as the noninteracting limit of our spin model
and serves as a useful point of reference. Note that, while the

string operators e�iπ
P

j−1
i

ĉ†i ĉi in the conditional Hamiltonian
(8) have cancelled out, those in the quantum jump term
L̂l
jρ̂ðtÞL̂l†

j cannot be removed. This means that even the XX
model case Δ ¼ 0 does not correspond to a free system.
Universality and scaling collapse.—Figure 2(a) shows

the spatially averaged excitation number n ¼ ð1=LÞPj nj
in the steady state as a function of Γ, where nj ¼
hn̂ji ¼ hŜzji þ 1

2
. Here, data is shown for a variety of

parameters, including different strength of nonrecipro-
city ϕ, Δ, J. Data for different system sizes is in the
SM [88]. For comparison, the free fermion case is also
plotted. Consistent with the property that Γ ¼ 0 is a criti-
cal point, we observe the power-law scaling n̄ ∼ Γα.
Remarkably, the exponent α ¼ 0.603ð9Þ in the blue shaded
region is identical in all cases, including both nonreciprocal
(ϕ ¼ −π=2) and reciprocal (ϕ ¼ 0) cases for XXZ (Δ > 0)
and XX models (Δ ¼ 0), different exchange interaction
strengths J, and even a purely dissipative case (Ĥ ¼ 0). The
obtained exponent α ¼ 0.603ð9Þ is different from the free
fermion case α ¼ 0.5. The result clearly demonstrates that
universal features have emerged, irrespective of the pres-
ence of the LSE. For the purely dissipative case (Ĥ ¼ 0), ϕ
can be removed from the Liouvillian (1) via a local gauge
transformation Ŝ−j → e−iϕjŜ−j , further illustrating that the
scaling is independent of reciprocity.
Figure 3 demonstrates a scaling collapse of the density

and the spatial correlation function in this region:

njðt;ΓÞ ¼ t−α=νzfnjðtΓνzÞ; ð9Þ

(a)

(b) (c) (d)

FIG. 2. (a) Excitation density n̄ vs Γ in the steady state for
different parameters. Results are displayed for the following
nonreciprocal (ϕ ¼ −π=2) systems: XXZ (Δ ¼ 2), XX (Δ ¼ 0),
and free fermions for L ¼ 500, as well as XXZ with J=κ ¼ 2
(Δ ¼ 1) for L ¼ 100. For ϕ ¼ −π=4 we show XXZ (Δ ¼ 2) with
L ¼ 100. Reciprocal (ϕ ¼ 0) XXZ (Δ ¼ 2), Ĥ ¼ 0, and free
fermion results are also shown, all with L ¼ 50. Various fits
n̄ ∼ Γα are displayed (discussion in the text). (b)–(d) Steady-state
excitation density nj for different Γ=κ, corresponding to the red
region ξheal ≪ L (a), the transition regime ξheal ∼ L (b), and the
asymptotic region ξheal ≫ L (c), respectively. The data corre-
sponds to the nonreciprocal case with Δ ¼ 0 and L ¼ 500.
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CjðΓÞ ¼ Γ2αfCj

	
Γνðj − L=2Þ
; ð10Þ

where CjðΓÞ is the magnitude of connected correlations
between a site j and the center of the chain L=2,
CjðΓÞ ¼ jhŜzL=2Ŝzji − hŜzL=2ihŜzjij. Here, fnjðxÞ, fCj

ðxÞ are
scaling functions for the density and spatial correlation
function, respectively, while α, z and ν are critical expo-
nents that characterize the universal features. Data is
provided for reciprocal and nonreciprocal cases and for
different parameters and initial states. The scaling collapse
is achieved, by setting the critical exponents fz; ν; αg ¼
f1.96ð13Þ; 0.386ð16Þ; 0.603ð9Þg [119], unambiguously
demonstrating the emergence of universality. For the free
fermions we find fz; ν; αg ¼ f2; 0.5; 0.5g [88]. The critical
phenomenon we observe is similar to the quantum critical
phenomena proposed in Refs. [40,41] for a driven-
dissipative bosonic system. However, their system has a

steady state that is interacting, while our steady state at the
critical point is a vacuum, resulting in a different univer-
sality class characterized by critical exponents fz; ν; αg ¼
f2.025; 0.405; 0.5g.
In the regime of sufficiently small Γ≲ J=L [the region

shaded in red in Fig. 2(a)], we observe that the scaling
properties change to n̄ ∼ Γα0 ¼ Γ, i.e., α0 ¼ 1. (Note how-
ever that this regime shrinks to measure zero as the system
size is increased.) This can be understood from the steady-
state density profile nj in Figs. 2(b)–2(d), which shows
results for different Γ values. As seen, the density profile
exhibits a dip at the left boundary, with its healing length
ξheal (characterizing the length of the dip) decreasing as a
function of Γ. The dip arises because sites near the left
boundary do not experience any flux of incoming excita-
tions from the boundary, whereas sites in the bulk are
“topped up” from their left. As these spin waves exhibit an
increasingly long lifetime as Γ decreases, the healing length
ξheal becomes increasingly long and diverges at Γ → 0.
Note that ξheal ∝ Γ−1 is very different from the localization
length ξloc of the eigenmodes of the Liouvillian L, which is
solely determined by the asymmetry of the hopping
ξloc ∼ 1= logðjJþj=jJ−jÞ [65].
In the asymptotic regime (J=L≲ Γ≲ κ) [Fig. 2(d)], the

healing length ξheal is small compared to the system size L.
Therefore, the density profile is almost uniform. As Γ
decreases to Γ≲ J=L the healing length starts to exceed the
system size [Figs. 2(b) and 2(c)]. This implies that, while in
the asymptotic region J=L≲ Γ≲ κ, the physics is deter-
mined by the bulk properties (that do not care about
LSE [65,122]), the region with Γ≲ J=L is dominated by
the edge properties, giving a natural explanation for the
change of scaling properties at different regimes. The
scaling n̄ ∼ Γ is consistent with the free fermion case with
perfect nonreciprocity (ϕ ¼ −π=2, J ¼ κ) for ξheal ≫ L
[65]. Interestingly, while in this limit the transition between
the two regimes occurs at Γ ¼ Oðvg=LÞ for free fermions,
for the spin systems, the many-body interaction alters the
scaling to Γ ¼ Oðvg=L1.25Þ, where vg ¼ J sinðπ − ϕÞ is the
group velocity of the least damped mode k�.
The scaling properties in the region Γ≲ J=L are strongly

affected by the LSE. This is demonstrated in Fig. 4(a),
which shows a space-time plot of the excitation density for
Γ ¼ 0, starting from an initially fully polarized state with
all spins up j⇑i. Here, the excitation density njðtÞ exhibits a
sudden transition from power law to exponential decay
[57,63,66]. This occurs when site j is no longer “topped
up” by incoming excitations: all the long-lived excitations
that were initially left of site j have propagated to its
right [67]. For sites near the right edge, which are last to
relax, this takes a time tr proportional to the system size,
i.e., tr ∼ ξz

0 ¼ L (z0 ¼ 1). In comparison, the transport is
approximately diffusive in the reciprocal case (z0 ≈ 2),
which is clearly visible in Fig. 1(c). Therefore, in the
region Γ≲ J=L the scaling is altered by the LSE. In the

(a)

(b)

FIG. 3. (a) njðt;ΓÞðκtÞα=νz vs ðΓ=κÞðκtÞ1=νz with α ¼ 0.603,
ν ¼ 0.386, and z ¼ 1.96 for the J=κ ¼ 1,Δ ¼ 2, dissipative XXZ
model over a range of Γ values, withL ¼ 500 and setting j ¼ 475.
Results are displayed for nonreciprocal (ϕ ¼ −π=2), reciprocal
ðϕ ¼ 0Þ, and Ĥ ¼ 0 cases, with initial conditions being the fully
polarized state j⇓i and the x-polarized stateQL

j jþij, respectively.
The inset shows unscaled data for the nonreciprocal cases.
(b) Scaled connected correlation CjðΓÞðΓ=κÞ−2α vs ðj − L=2Þ
ðΓ=κÞν in the steady state for a range of Γ values. The inset shows
the unscaled data.
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SM [88], we show for the free fermion system that under
PBC this region only arises for Γ ≤ Oð1=L2Þ.
Finally, Fig. 4(b) shows that many-body effects also alter

the power-law exponent χ ¼ 0.58 of njðtÞ ∼ t−χ at Γ ¼ 0
from the free fermion result χ ¼ 0.5. Curiously, χ is
found to be initial-state-dependent ranging from χ ¼ 0.5
to 0.58 [88]. Clarifying the origin of this remains our
future work.
Discussion.—In conclusion, we have demonstrated the

existence of a Liouvillian skin effect (LSE) independent
universal regime. We showed that the LSE can affect the
bulk properties only when ξheal ≳OðLÞ. The LSE-induced
transition of scaling reported in Refs. [63,83] corresponds
to the latter regime where the number conservation in their
model implies the absence of characteristic length scales
(similar to “model B” of Ref. [123]).

We thank Aashish Clerk, Kazuya Fujimoto, Tomohiro
Sasamoto, and Hironobu Yoshida for useful discussions
and Hosho Katsura and Alexander McDonald for the
critical reading of the manuscript. This work was supported
by an appointment to the JRG program at the APCTP
through the Science and Technology Promotion Fund and
Lottery Fund of the Korean Government, as well as by
Grant-in-Aid for Research Activity Start-up from JSPS in
Japan (Grant No. 23K19034), and by the National Research
Foundation (NRF) funded by the Ministry of Science of
Korea (Grant No. RS-2023-00249900). S. E. B. acknowl-
edges the support of the Young Scientist Training Program
at the Asia Pacific Center for Theoretical Physics.

*samuel.begg@apctp.org
†ryo.hanai@yukawa.kyoto-u.ac.jp, ryo.hanai@apctp.org

[1] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[2] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O.

Shochet, Phys. Rev. Lett. 75, 1226 (1995).
[3] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).

[4] B. Mahault, F. Ginelli, and H. Chaté, Phys. Rev. Lett. 123,
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