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We consider how to describe Hamiltonian mechanics in generalized probabilistic theories with the states
represented as quasiprobability distributions. We give general operational definitions of energy-related
concepts. We define generalized energy eigenstates as the purest stationary states. Planck’s constant plays
two different roles in the framework: the phase space volume taken up by a pure state and a dynamical
factor. The Hamiltonian is a linear combination of generalized energy eigenstates. This allows for a
generalized Liouville time-evolution equation that applies to quantum and classical Hamiltonian mechanics
and more. The approach enables a unification of quantum and classical energy concepts and a route to
discussing energy in a wider set of theories.
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Introduction.—Generalized probabilistic theories (GPTs)
constitute ametatheoretical framework developedwithin the
foundations of quantummechanics. Two key goals of GPTs
are to understand the structure of quantum theory, particu-
larly which elements necessarily arise from its probabilistic
nature, and to elucidate the relations between classical and
quantum mechanics [1–4]. Classical and quantum theories,
as well as classical-quantum hybrid models, appear as
special cases [3–5]. The states in GPTs are viewed as
compressed lists of probabilities of possible measurement
outcomes, with specifications contingent on the system
preparation and subsequent dynamical transformations.
While the initial emphasis was on the underlying probabi-
listic structure of GPTs, there is now a growing focus on a
unified treatment of energy concepts within GPTs and the
exploration of natural generalizations of classical and
quantum dynamics [6–11].
In Refs. [6–9], the quantum theory Hamiltonian was

extended in various ways to GPTs. In Ref. [7] it was shown
that the phase space formalism can represent continuous-
variable generalized probabilistic theory models. Thus one
may use the phase space formalism for a dynamical descrip-
tion of hypothetical post-quantum theories of mechanics
[7,9]. Using the phase space approach, Ref. [10] recently
presented postquantum toy models of real systems including
hydrogen atoms, by hypothesizing a generalized phase-space
time evolution that is based on a generalization of a quantum-
mechanical Moyal bracket [11].
These promising results create hope that we can develop

self-consistent postquantum theories of Hamiltonian mecha-
nics as well as gain a deeper understanding of quantum and

classical mechanics and their interrelations. There are certain
hurdles lying ahead. For example, the formal classical
limit of quantum theory where the Planck constant is taken
to zero is singular [12], creating a further potential block
towards a unified framework: how does one generalize
this constant? There is also the fact that well-defined energy
states in classical mechanics have descriptions (for example,
Liouville density written in terms of positions and mo-
menta), that evolve explicitly, whereas quantum energy
eigenstates are stationary and thus akin to functions of
action and angle variables. Thus it may appear as though at
least some classical energy concepts are incompatible with
quantum energy concepts.
We tackle these questions via a generalized phase space

approach. By introducing postulates that reduce to the
standard assumptions of the quantum and classical theories
in the appropriate limits, we are able to describe dynamics
in terms of a generalized Hamiltonian Hðq; pÞ. The
generalized evolution equations are obtained with the help
of a theory-specific integration kernel KðkÞ. In the par-
ticular case of KðkÞ → ð2=kÞδðk − ℏÞ, the quantum evo-
lution is recovered. When KðkÞ → ð2=kÞδðkÞ, the classical
evolution is obtained. General functions KðkÞ model post-
quantum theories.
The Hamiltonian of a closed system is an observ-

able with a time-invariant expectation value hEi ¼R
Hðq; pÞfðq; pÞdqdp, where f is a GPT state. We

construct the Hamiltonian as H ¼P
i EiVgigi, where Ei

are the generalized energy eigenvalues and gi are their
generalized eigenstates that are ascribed a phase space
volume Vgi . This volume acts as a generalization of the
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Bohr-Sommerfeld elementary volume, reducing to Vgi ¼
ð2πℏÞn for a quantum system with n degrees of freedom.
The generalized energy eigenstates gi are defined as the
purest stationary states. In other words, they are time-
invariant states that are not mixtures of other time-invariant
states [13]. They coincide with the standard energy eigen-
states if the GPT is a quantum theory and are uniform
distributions over phase space orbits in the case of classical
mechanics.
These results provide a unified framework within which

one can derive statements relating to energy in such a
manner that they apply directly to both quantum and
classical mechanics as well as to a wider set of theories.
We proceed as follows. First, we briefly summarize the

key rules of the quantum and classical phase space
description. We then generalize (i) the Born rule and
Planck’s constant therein, (ii) the energy eigenstates, (iii) the
equation of motion, and (iv) the Hamiltonian. Detailed
derivations and additional results are given in an accom-
panying paper [14].
Phase space representation.—Consider first classical

mechanics of a nonconstrained system with a finite number
of degrees of freedom. Its states and (the algebra of)
observables are smooth functions on the phase space P
[12,15]. Mathematically, it is a symplectic manifold that is
a cotangent bundle of the configuration space with local
coordinates q. The local coordinates on P are z ¼ ðq; pÞ,
where p are the generalized momenta.
The Poisson bracket of two phase space functions ff; gg

is defined as

X
j

�
∂f
∂qj

∂g
∂pj

−
∂f
∂pj

∂g
∂qj

�
≡fð∂q ∂p

!−∂p
 

∂q
!Þg≡−fΛg; ð1Þ

where j runs through all the degrees of freedom (wewill focus
on one-dimensional systems hereafter), and arrows indicate
the direction of action of the differential operators. The
Poisson bracket governs the dynamics of observables via
the canonical equations ofmotion q̇¼fq;Hg and ṗ¼fp;Hg,
that are generated by the system’s Hamiltonian H.
Our knowledge about a system is encapsulated in a

probability (Liouville) density ρðzÞ. Its evolution is given
by the Liouville equation,

∂ρðq; pÞ
∂t

¼ fH; ρg ¼ −HΛρ: ð2Þ

The most common quantum phase space representation
[11,16,17] is the Wigner function Wðq; pÞ, a real function
which may be negative for regions of q, p, and is therefore
termed a quasiprobability density [11,12,16,18–20]. The
Wigner function corresponding to a Hermitian operator Â is
the Fourier transform of the off-diagonals of Â (the Wigner
transform of Â):

Aðq; pÞ ≔ WignerkfÂgðq; pÞ

¼
Z

dxeipx=k
�
q −

1

2
xjÂjqþ 1

2
x

�
: ð3Þ

The Weyl transform [11,16]

Â¼ 1

4π2k2

Z
WignerkfÂgðq;pÞei

aðq−q̂Þþbðp−p̂Þ
k dqdpdadb; ð4Þ

effects the inverse transformation, with obvious generaliza-
tion to n degrees of freedom. In quantum mechanics k ¼ ℏ.
Both transforms do not affect the dimension. Since ρ̂ is di-
mensionless, the Wigner function as a quasiprobability dis-
tribution onP is defined asWρ̂ ≔ Wignerℏfρ̂=ð2πℏÞg [16].
The Born rule is reproduced by the following inner

product,

pðijρ̂jÞ ¼ TrðÊiρ̂jÞ ¼ h
Z

WiWjdqdp; ð5Þ

where h¼2πℏ, andWi andWj are Wigner functions corres-
ponding to Êi (the effect) and ρ̂j (the state), respectively.
The (noncommutative) product of operators is repre-

sented as WignerℏfÂ B̂g ¼WignerℏfÂg⋆WignerℏfB̂g,
where ⋆ ¼ expð− 1

2
iℏΛÞ is the Moyal star product.

Finally, the time evolution of the density operator ρ̂ under
the (Weyl-ordered) Hamiltonian Ĥ is equivalently repre-
sented as the evolution of the Wigner function Wρ,

∂Wρ

∂t
¼ 1

iℏ
ðH⋆Wρ −Wρ⋆HÞ

¼ −
2

ℏ
Hðq; pÞ sin

�
ℏ
2
Λ
�
Wρðq; pÞ: ð6Þ

When ℏ → 0, Eq. (6) becomes the classical evolu-
tion Eq. (2).
Generalized Born rule and inner product from

symmetries.—A key ingredient of any generalized prob-
abilistic theory (GPT) is the assignment of probabilities of
the outcomes i of tests on preparations f, PðijfÞ ¼ eiðfÞ
[1–3,21–23]. In the terminology of quantum foundations
research, the functional ei on the state space is called an
effect [24,25]. In GPTs the states are represented as real
vectors, which here correspond to continuous real distri-
butions fðzÞ [7].
It is standard to assume linearity of the effects in a GPT,

such that the probability of a discrete outcome can always
be represented via

PðijfÞ ¼ eiðfÞ ¼ ci

Z
fðzÞgiðzÞdz; ð7Þ

where gi is a real-valued normalized function and ci is a
positive constant. gi does not necessarily represent a valid
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state. For the effects to form a complete measurement the
identity

P
i eiðfÞ ¼ 1 should hold for any allowed state f.

Thus
P

i cigi ¼ 1, which is known as the completeness
condition for a measurement.
Similar expressions give the probability of continuous

effects labeled by a continuous variable μ. The probability
of falling into an interval ðμ; μþ dμÞ is dPðμ; dμjfÞ ¼
ρðμjfÞdμ, where ρðμjfÞ is the probability density for the
outcome μ given the state f. We can represent the density
by the general expression ρðμjfÞ ¼ cμ

R
fðzÞgμðzÞdz. For

example, classical (sharp) phase space localization has
μ ¼ z0 ∈P, and the state is given by the Liouville density:
f ¼ ρðzÞ. The probability of being within the volume dz0
around z0 in P is dP ¼ ρðz0Þdz0. Comparison with the
general expression identifies gz0ðzÞ¼δðz−z0Þ and cz0 ¼ 1.
While the gi of effects in Eq. (7) are in general not

associated with specific states, it is possible that gi is a
function representing a state such that Eq. (7) can be
interpreted as the probability being proportional to the inner
product between two states, with

hf; gi ¼
Z

fðq; pÞgðq; pÞdqdp ð8Þ

being a possible form of the inner product. We find that
Eq. (8) is, up to a multiplier, the unique inner product under
three symmetries. The symmetries read as follows: 1.
Translation: ðq; p; tÞ↦ ðqþ a; pþ b; tþ cÞ, for any
a; b; c∈R, 2. Switch: ðq; p; tÞ↦ ðCp; q=C;−tÞ, where
C is an arbitrary constant fixing unit, 3. Time reversal:
ðq; p; tÞ↦ ðq;−p;−tÞ. (See the Supplemental Material
[26] for details).
Equation (8) allows us to interpret the inner product with

a state gi as a possibly allowed effect eiðfÞ ∝ hgi; fi ∝R
fgidqdp. The proportionality constant is fixed if

eiðgiÞ ¼ 1:

1 ¼ eiðgiÞ ¼ ci

Z
gigidqdp ≔ cikgik2; ð9Þ

resulting in ci ¼ kgik−2. We call complete sets of such
effects state-dual measurements. Projective measurements
in quantum theory are an example. State-dual measure-
ments are guaranteed to exist in so-called self-dual theo-
ries [2,3].
Equation (9) associates a property of state gi with the

corresponding state-dual measurement. This relationship
ascribes a quantity with the units of ½qp� to the effect gi. We
will show this ci can be given the meaning of volume that is
occupied by the corresponding state in P.
Generalized Planck constant of uncertainty: State

volume.—Consider a set of state-dual measurements on
the system whose states are confined within the region
D ⊂ P. The functions fgig that represent the effects have
joint support in the same domain. Completeness of the

measurement inside D implies
P

N
i¼1 cigi ¼ 1D, where 1D

takes value 1 inside the domain D and 0 outside it. As the
support of any gi is in D, the phase space volume VD
satisfies

VD ¼
Z

1Ddz ¼
X
i

ci

Z
D
gidz ¼

X
i

ci; ð10Þ

enabling the interpretation of the coefficients ci as the
effective phase space volume of the states gi. We will
accordingly use the terminology of the state volume Vfi of
a function fi in P as

Vfi ≔
�Z

f2i dqdp

�
−1
¼ 1

kfik2
: ð11Þ

The generalized Born rule for state-dual measurements
can now be written as

PðijfÞ ¼ Vgi

Z
giðq; pÞfðq; pÞdqdp: ð12Þ

For example, in quantum theory the purity of a state ρ̂ is
bounded via Eq. (5) as Trðρ̂2Þ ¼ h

R
W2

i ⩽ 1. Thus the state
volume of any pure quantum state is given by the Planck
constant, Vρ ¼ kWρk−2 ¼ h, while mixed states have
larger state volumes.
Classical pure states are associated with points in P and

Dirac-delta distributions centred on those points [12]. For
concreteness, consider a mixed state fδε that is given by a
uniform distribution in the volume ΔqΔp, where we set
Δq ¼ δ, Δp ¼ ε and take the limit of zero uncertainty by
εδ → 0. A normalized rectangular function is 1=ðεδÞ on this
domain and zero elsewhere. Equation (11) then implies that
in the limit εδ → 0 the volume Vfδε approaches zero. In an
epistemically restricted classical theory simulating quan-
tum mechanics [27] Vf ⩾ h.
If we demand that similarly to classical and quantum

theories all pure states in a GPT have the same 2-norm (this
does not hold in the example of the probabilistic theory
known as box world [28]) we can define a state-indepen-
dent generalization of h as kgpk−2 ¼ Vp, where gp is an
arbitrary pure state. The number N of distinguishable states
(associated with the state-dual measurements in D) can be
interpreted as the amount of information (as measured in
the number of states) one can store in the system, and then
obeys N ≤ ðVD=VpÞ in line with Eq. (10).
Generalized energy eigenstates.—We generalize the

energy eigenstates of quantum mechanics as the set of
purest stationary states of a GPT. For stationary states the
probabilities of all time-independent effects are time
independent, and thus they are given by time-independent
functions on P.
Probabilistic mixtures of stationary states are, by inspec-

tion, also stationary, so there is a convex set of stationary
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states. Pure stationary states are the extreme points of the
set of stationary states. Pure stationary states are not
necessarily pure states of the corresponding GPT, i.e.,
the extreme points [12,25] of the convex set of all states.
Wigner functions that represent the energy eigenstates of

quantum mechanics are stationary by construction. On the
other hand, if the action-angle I − θ variables can be
introduced [15,29,30], then the invariance of the action
variables is an explicit manifestation of stationarity. The
classical energy eigenstates are then δðI − I0Þ=ð2πÞ, for all
the possible I0, corresponding to uniform distributions over
phase-space orbits. Thus pure stationary states of classical
mechanics are not classical pure states. These correspond to
the phase space points and in the Schrödinger picture are
explicitly given as fz0ðtÞ ¼ δðz − z0ðtÞÞ, where z0ðtÞ∈P is
the phase space trajectory. The pure stationary states
moreover coincide with the eigenfunctions of the
Liouvillian operator in the Koopman–von Neumann quan-
tumlike formulation of classical mechanics [14]. However,
the dual role of the Hamiltonians as the generator of
dynamics and as an observable, which we incorporate in
the GPT framework, is not respected in the Koopman–von
Neumann formulation, which has important consequences
for the hybrid quantum-classical mechanics [31].
We will show in subsequent sections that pure stationary

states further satisfy two natural desiderata for genera-
lized energy eigenstates: (i) pure stationary states can be
assigned sharp energy values, always giving the same value
in an energy measurement, and (ii) they determine the time
evolution of the system.
Generalized equation of motion.—A class of generalized

equations of motion for the states fðz; tÞ is obtained if
their generator G is assumed to be a bilinear functional
of the state f and the generalized energy eigenstates
Gðf;P eigiÞ ¼

P
i eiGðf; giÞ. Imposing the additional

assumptions of (i) the symmetries of canonical coordinates;
(ii) preservation of the inner product; (iii) Gðgi; gjÞ ¼ 0 for
all i, j results in (see Supplemental Material [26] for
details):

∂f
∂t
¼

X
i

εi

Z
KðkÞf sin

�
k
2
Λ
�
gidk

¼
X
i

εi

Z
i
2
KðkÞWignerkf½f̂k; ðĝiÞk�gdk; ð13Þ

where εi are constant coefficients and KðkÞ is a theory-
specific distribution. Wignerkfg represents the Wigner
transform of Eq. (3), and f̂k, ðĝiÞk are the Weyl transforms
[Eq. (4)] of f and gi (their units are different from density
matrices). To include the continuous spectrum (unbounded
quantum states, classical mechanics), the sum over should
be replaced by integration. This generalized evolution
provides a restricted version of the generalized Moyal
bracket in Ref. [10], here derived from physical principles.

We recover the quantum dynamics [Eq. (6)] if we
identify KðkÞ ¼ 2δðk − ℏÞ=k [and Hðq; pÞ≡P

i εigi].
To obtain the classical theory [Eq. (2)] we have to take
a (singular) limit ℏ → 0. Thus KðkÞ can be viewed as
generalizing the dynamically important Planck constant.
As a simple example of a self-consistent theory where

the dynamical and state Planck constants differ, consider
d-dimensional quantum systems with a restriction on the
information about the preparation such that the allowed
pure states of the restricted theory are the states of the form
1
2
jψiðaÞhψ jðaÞ þ 1

2
jψiðbÞhψ jðbÞ, where jψiðxÞ ¼P

d
i¼1 c

ðxÞ
i jii

and hψ jðaÞjψiðbÞ ¼ 0. Then the generalized Planck constant
for states is V ¼ 2h, whereas the dynamical Planck con-
stant remains h (see Ref. [14] for details).
For a general KðkÞ the evolution is given by the integral

of commutators with different commutation relations. A
nonassociative algebra replaces the associative Moyal
bracket or the operator product. Therefore, the transforma-
tion is no longer described by a Lie group, but a
quasigroup, or what may be termed a loop [32]. We have
not found any principle that rejects this possibility.
Generalized energy and Hamiltonian.—We now com-

plete the discussion by providing an explicit expression for
the Hamiltonian as an observable and writing the gener-
alized time evolution equation in terms of that Hamiltonian.
The set of energy eigenstates provides a set of state-dual

measurement effects in quantum mechanics. Generalizing
this idea, we postulate that there exists a state-dual
measurement corresponding to the pure stationary states
fgig (fgμg in the case of a continuum labeled by μ).
A restriction on how to define generalized energy values

is that the identification H ¼P
i εigi in Eq. (13) in the

quantum cases indicates that the energy eigenvalues (sca-
lars with the dimension of energy) are Ei ¼ εi=ð2πℏÞ ¼
εi=Vi, where we used Eq. (12) and that Vi ¼ 2πℏ for all
pure states in quantum mechanics.
Extending the definition of the Hamiltonian as the

generator of time evolution, we demand

∂f
∂t
¼

Z
dkKðkÞf sin

�
Λk
2

�
H; ð14Þ

i.e., the dynamics of a GPT is determined by the set ðgi; εiÞ
and the kernelKðkÞ. Thus the Hamiltonian can be written as

Hðq; pÞ ¼
X
i

EigiVgi þ
Z

EμgμdVμ; ð15Þ

an expression that also defines the generalized energy
eigenvalues (both the discrete and continuous parts of the
spectrum). In Ref. [14], we give a detailed discussion about
how the generalized energy is a conserved and additive
quantity.
We have seen that the above definition reduces to the

standard expression for the energy in quantum theory. In
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classical mechanics we have gI0ðIÞ ¼ ð1=2πÞδðI − I0Þ,
where I stands for the action in the action-angle coordinate
[15], such that

H ¼
Z

EI0

1

2π
δðI − I0Þ2πdI0; ð16Þ

where EI0 is the classical energy that corresponds to the I0,
ð1=2πÞδðI − I0Þ is a normalized state, and 2πdI0 gives
dVI0 . It trivially satisfies Eq. (15).
Consider the expectation value of energy. By the genera-

lized Born rule of Eq. (12), PðijfÞ ¼ R
Vgigifdqdp.

Combining that with the definition of the Hamiltonian
[Eq. (15)], we have that the expectation value of energy for
state f is given by

hEi ¼
Z

Hfdqdp; ð17Þ

which for the generalized energy eigenstate gi is just its
value Ei.
Summary and outlook.—We built a generalized phase-

space framework centered around generalizations of the
quantum energy concepts, like Hamiltonian and energy
eigenstates (as listed in Table I). We define the generalized
energy eigenstates operationally: the most pure stationary
states. Based on these pure stationary states, we derive a
generalized equation of motion in phase space that encom-
passes the quantum and classical Liouville equations of
motion. This includes generalizing Planck’s constant. In
our framework, Planck’s constant provides the volume
occupied by pure states and also appears in the commu-
tation relation in the equation of motion. The two gener-
alizations of Planck’s constant can have different values in
general theories. The axioms used are listed together in the
Supplemental Material [26]. A specific theory is obtained
by specifying the set of pure states of the theory, the
dynamical kernel KðkÞ, and a general postmeasurement
state update rule, as can be seen, e.g., from comparison with
summaries of classical and quantum axioms [12,25,33]. An
accompanying extended article contains a derivation of the
generalized Born rule from symmetries and examples of
theories other than quantum and classical, among other
things [14].

This framework can be employed and developed in
several directions: (i) The link between the generalized
evolution, state or effect negativity, “jumping in phase
space,” and contextuality deserve investigation [14].
(ii) Other forms of mechanics can be built, that are neither
classical nor quantum, e.g., by letting Planck’s constant in
the equation of motion differ from Planck’s constant for
uncertainty or choosing a nontrivial KðkÞ. (iii) The frame-
work enables clear analogies and comparisons between
quantum and classical dynamics and could, for example,
help clarify the apparent speed-up of Hamiltonian-based
quantum walks over classical walks [34]. (iv) It may be
possible to reduce or alter the set of postulates (see the
Supplemental Material [26] for a list), and (v) it is natural to
employ the framework to create a theory of thermodynam-
ics that is independent of the underlying choice of
mechanics.
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