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A simple cell model consisting of a catalytic reaction network with intermediate complex formation is
numerically studied. As nutrients are depleted, the transition from the exponential growth phase to the
growth-arrested dormant phase occurs along with hysteresis and a lag time for growth recovery. This
transition is caused by the accumulation of intermediate complexes, leading to the jamming of reactions
and the diversification of components. These properties are generic in random reaction networks, as
supported by dynamical systems analyses of corresponding mean-field models.
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As microbial cells proliferate, they are crowded and
nutrients in the environment are depleted. The cells then
enter the dormant phase (or the so-called stationary phase),
in which cell growth is significantly arrested [1]. This
behavior is commonly observed across microbial species
and even mammalian cells under a variety of environmental
conditions [2]. In fact, most microbial cells in natural
ecosystems are in the growth-arrested dormant phase, as
they are under resource limitation [3—7]. Once cells enter
the dormant phase, the intracellular metabolic phenotypes
drastically change, whereas bistability and hysteresis
between the states with exponential and arrested growth
are observed as a bimodal distribution of cell growth [8]
and are suggested theoretically [9]. Once the cell is in the
dormant phase, a certain time is required to recover growth
even after the resource supply has resumed; this is known
as the lag time [10-12].

Despite the importance of such universal and mundane
behavior, the theoretical understanding of dormancy is still
in its infancy compared to that of the exponential growth
phase, for which well-established quantitative theories are
available [13-15]. Although specific molecular mecha-
nisms of dormancy have been extensively studied [4,16],
little attention has been paid to establishing a theory for
universal characteristics of the dormant phase and tran-
sitions to it. References [17,18] represent a few early
exceptions. In Ref. [17], by assuming that nutrient
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limitation leads to the accumulation of waste chemicals,
a phenomenological model for the growth-dormant tran-
sition was proposed and quantitative laws of the lag time
were derived. In Ref. [18], an abstract spin glass model for
aging dynamics was proposed. However, the mechanism of
the growth-dormant transition and the origin of its univer-
sality across species have not been fully explored.
Therefore, a better understanding of the growth-dormant
transition as a universal behavior of cells growing through
intracellular reactions with many components is required.

In this Letter, by considering a simple cell model
consisting of catalytic reactions of many components,
we demonstrate that such a transition between growth
and dormant phases generally appears without specifically
tuning the intracellular reactions, as long as intermediate
complexes between substrates and catalysts have sufficient
lifetimes. The transition is caused by the accumulation of
complexes under the depletion of nutrients, and it is
characterized as a cusp bifurcation in dynamical systems
theory. The transition observed in random reaction net-
works is then analyzed using ‘“mean-field” models of
catalytic reaction dynamics, which also implies that the
transition to a dormant phase does not require any special
mechanism and is a universal feature of cells that grow by
intracellular catalytic reactions.

Model.—In this Letter, we adopt a simple model of
cellular dynamics that captures only the basic features of
these dynamics. It consists of intracellular reaction net-
works and transport reactions of externally supplied
nutrient(s). Complicated intracellular metabolic reactions
are simplified as randomly connected catalytic reaction
networks. Although such models with catalytic reaction
networks have reproduced the statistics of cells in the
exponential growth phase [19,20], they do not demonstrate
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the growth-dormant transition. One possible drawback of
these models is that catalytic reactions progress immedi-
ately. In reality, each chemical reaction progresses after the
formation of an intermediate complex between the sub-
strate and the catalyst is formed.

We introduce a model that includes the formation of
intermediate complexes in reactions and examine whether
and how the growth-dormant transition is exhibited by the
model. Then, each catalytic reaction p, in which substrate

X, is converted into product X o) by catalyst X, , consists

of two-step elementary reaction processes with the for-
mation of an intermediate complex Y, as follows:

Ko U
NG
Xy, + X, ~k Y/)_’X/),, + X,

Here, each elementary process proceeds according to the
law of mass action with the labeled coefficient, and py, p,,
and p,. denote the indices of the substrate, product, and
catalyst for reaction p, respectively. For the adiabatic limit
v, — oo, the above reaction processes are reduced to the
single mass action kinetics without intermediate complex
formation, X, +X, — X oy T Xpos and the model is
reduced to those studied earlier [19,20]. In contrast, when
v, is small, the intermediate complex Y, can accumulate,
leading to a decrease in free reactants that are not bound to
complexes, which can hinder the reaction processes.

Considering a cell consisting of n chemicals and N,
reactions (and the corresponding intermediate complexes),
its state is represented by a set of concentrations (x,y) of
free reactants X; and complexes Y ,. The time change of the
cellular state (x,y) is then given as follows:

xi = Z[(éi,pp + 51‘,/)(4)7]/)))/) - (51',/)‘\. + 51‘,/)( )fp(X, Y)]

p
+Fi(X;Sext’a) — KX, (1)
).7/) = f/)(X9 y) —UpYp = HY)p> (2)

where f,(X.y) = k;x, x, — kv, is the total consumption
rate of substrate p, by reaction p, and 6 is Kronecker’s delta.
The term F;(X; Sy, @) in Eq. (1) represents the intake of
chemical X; (i =0,1,...,n— 1), which can be nonzero if
X, is a nutrient but is zero otherwise. The last terms in
Egs. (1) and (2), —px; and —puy,, represent the dilution of
each concentration due to cellular volume growth. The
growth rate u is given by u(x,y) = >, F;(x), because for
simplicity we assumed that the contribution of each
chemical X; to volume or weight is uniform regardless
of i. > ;x;+2),y, = lis then constant in the dynamics
(1) and (2) based on the law of mass conservation.
Below, for simplification purposes, the reaction rate
constants k,f, k,, and v, are set as independent of p,
and they are denoted by k" =1, k= =0, and v,

respectively [21]. For simplicity, we also assumed that
there is only a single nutrient chemical X,,. Its intake is
mediated by transporter chemical X; with a =2, ie.,
Fi(X; Sexs @) = 8;9Sexix, Where Sy, denotes the environ-
mental concentration of nutrient chemical X, and the
transport coefficient for F; is normalized as unity. Note
that the following results and arguments hold independent
of the details of settings, such as parameter values and
specific functional forms of nutrient intake F; [see also
Sec. A of the Supplemental Material (SM) [22] ].

Randomly generated networks.—To understand the
behaviors of the above model, we first randomly generated
hundreds of intracellular reaction networks [26]. The
steady state x* for each reaction network was numerically
calculated. We here numerically confirmed that there is a
unique steady state for each of the growth and dormant
phases [27]. We then observed discontinuous transitions
between growth and dormant phases against external
nutrient abundance S.,;.

As an example, we consider the reaction network in
Fig. 1(a). In Fig. 1(b), the steady growth rate y*, numeri-
cally obtained by solving the dynamics (1) and (2), is
plotted against the environmental nutrient concentration
Sext- As shown, p* drops by orders of magnitude at a certain
value of S, denoted by S¢, thus demonstrating the
transition from growth to the growth-arrested dormant
phase. In addition, when S, is increased starting with
the dormant phase, the transition occurs at a larger S.,,, thus
demonstrating hysteresis and bistability between the
growth and dormant phases with intermediate levels of
nutrient supply S, [Fig. 1(b)] [28], as is observed for real
microbes [8].

Through this growth-dormant transition, the intracellu-
lar chemical compositions and dominant reactions at work
also change drastically [Figs. 1(b) and 1(c)]. In the growth
phase with larger S, the nutrient influx is concentrated on
an autocatalytic growth subnetwork (AGS) [30-34] con-
sisting of a few chemicals and reactions that connect the
nutrient to the transporter (and its associated by-products).
In contrast, in the dormant phase, fluxes spread over many
chemicals in subnetworks that cannot sustain growth by
themselves and are parasitic on the AGS; i.e., the synthesis
of their components is supported by the AGS but does not
support the synthesis of the AGS. We call these the
nongrowing subnetwork (NGS) (see Sec. A of the SM
[22] for details). These subnetworks compete with each
other while also overlapping: activation of the AGS
suppresses the NGS via growth-induced dilution, while
the latter inhibits the former when the NGS can replicate
autocatalytically by consuming some chemical in the AGS;
moreover, reactants bound as a complex in the NGS cannot
work for reactions in the AGS, and vice versa. Consistently,
the total concentration of complexes Y =) y; and the
complexes within the NGS increase across the growth-
dormant transition, as shown in Fig. 1(d). Owing to the

118401-2



PHYSICAL REVIEW LETTERS 132, 118401 (2024)

Sexe =300

ext

ext os (€)1

107!

0.1 1072

0 0.
10° 10! 10?

Sext Sext

FIG. 1. Example of a growth-dormant transition in randomly
generated networks. (a) Reaction network (n = 10, N, = 30).
Chemicals at arrow tails are transformed into those at arrow heads,
catalyzed by the chemicals labeled on the edges. Nutrient X, is
taken up via active transport by transporter X in proportion to x%.
(b) Dependence of u* (black points) and x; (colored lines) on Sey,.
v =0.01. S5, ~8.9. Each different color denotes a different i.
Inset: Hysteresis and bistability for x*. (c) Dominant pathways for
the growth phase (S., = 300; top sketch) and dormant phase
(Sext = 0.3; bottom sketch). » = 0.01. The edge colors represent
reaction fluxes in the log scale. (d) Dependence of composition
entropy H := -3, xjlogx; — ), 2y;log(2y;) (black line) as
well as ¥ := )y} (gray line) and total concentrations of com-
plexes inthe AGS (Y xgs = D, ags p; blue line) and in the NGS
(YNGs = D_penas\acs Yp; orange line) on Se. v =00l
(e) Dependence of p* on (S, v). #* is numerically calculated
by decreasing S.,, for each v, and hysteresis is numerically
observed in the area surrounded by the gray line.

competition between the AGS and the NGS, this transition
exhibits discontinuity, hysteresis, and bistability [Figs. 1(b)
and I(e)]. Indeed, without such a NGS being parasitic on
the AGS, the growth-dormant transition does not occur
(Fig. S2 of the SM [22]).

To measure such competition, we defined the composi-
tion entropy H(X,y) == =), x; logx; = >, 2y, log(2y,),
which quantifies the diversity of cellular components. In
general, in the growth phase, the AGS with the largest
growth rate should be dominant and H is small, whereas in
the dormant phase, many reactions and chemicals in the
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FIG. 2. Steady growth rate u*, total concentration of complexes
Y, and composition entropy H plotted against S./SS, for
randomly generated networks exhibiting growth-dormant tran-
sitions in different colors. n = 10, N, = 30, and v = 0.01.

NGS are involved to a similar extent, and thus H can be
relatively large. As both subnetworks are comparably
active near the critical nutrient concentration St the
composition entropy H, or the diversity of the intracellular
chemical composition reaches a maximum near the tran-
sition point [Fig. 1(d)]. Notably, such a trend is common
among randomly generated networks (Fig. 2) [35]. From a
biological perspective, this prediction would be consistent
with the observations that stringent responses increase the
diversity of the cellular components during the transition
and in the dormant phase [4,16,36].

The suppression of growth at the transition can be
understood as a type of jamming caused by the accumulation
of intermediate complexes [37]: the occupation of com-
plexes in the NGS limits the free catalysts necessary for
reactions in the AGS since it causes further occupation of
complexes in the NGS, leading to a cascading effect similar
to the jamming process. Consistently, if v is sufficiently
large, discontinuous transition and hysteresis are not
observed against changes in S, [Fig. 1(e)]. Moreover,
the dependence of the steady growth rate y* on (Sey, v) in
Fig. 1(e) suggests a cusp bifurcation in the dynamical
systems theory (as is also confirmed by the following
mean-field analysis) [38]. We also found that as v is smaller,
both S¢, and .« are smaller; in other words, when v varies,
a trade-off occurs between maximum growth rate y,,, and
minimal nutrient concentration for the growth phase, Sg,,.
Such a trade-off has historically been considered a result of
evolution leading to adaptations to either abundant or scarce
nutrient environments [42,43], whereas our results suggest
that this trade-off is a universal feature of growing cells with
complex reaction networks.

Statistically, sufficiently large reaction networks are
expected to include NGSs in addition to AGSs. Indeed,
even with n = 10-30, about half of the randomly generated
networks exhibited growth-dormant transitions [Fig. S3(a)
of the SM [22] ]. In addition, the proportion of networks that
exhibit transitions is maximal for relatively sparse reaction
networks, and the peak value gradually increases as the
number n of chemicals increases. The following character-
istics are also common to such networks: (i) growth-dormant
transition against changes in S, requires small v, i.e.,
sufficient residence time for the complexes; (ii) hysteresis
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Mean-field models. (a) Mean-field model with S, X, and Y only. Top sketch: network structure. Bottom panel: dependence of

w1 and steady states on Sg. S& =~ 9.3, a = 3, and v = 0.001. (b)—(e) Mean-field model with the distinction between transporter 7 and
the remaining chemicals X. Unless otherwise stated, v = 0.01 and ny = 2. (b) Top sketch: network structure. Bottom panel: dependence
of u* and steady states on Sg,,. S, ~ 21.9. (c) Bifurcation diagram: Dependence of T* on (S, v) in the log scale. (d) Flow diagram in
the phase space (7', X). The red and blue lines represent T nullcline and X nullcline, respectively. Arrows with brighter colors correspond
to faster flows. (e) Self-consistent equation for 7 and u. The black and orange lines depict T = T*(u; v, ny) [Eq. (B1) of the SM [22] ]

and T = (u/Sex)/* with Sg = 10, 25, 50, respectively.

against changes in Sg; (ill) increases in composition
entropy H around the transitions; and (iv) a trade-off
between maximum growth rates ., and minimal nutrient
concentrations S¢, to sustain growth. These results, pre-
sented theoretically for the first time and in agreement with
experiments, suggest the universality of growth-dormant
transitions due to reactant competition via complex for-
mation in complicated reaction networks, as is the case for
metabolic networks in real microbes.

Lag time.—We also numerically calculated the time for
growth recovery after starvation as follows: First, up to
t = 0, cells are set in nutrient-rich conditions with suffi-
ciently large S.,;, remaining in steady states with expo-
nential growth. At ¢ = 0, the external nutrient supply is
instantaneously depleted to S.y; = O until # = T, . Finally,
Sext 18 instantaneously increased to the original value. Then,
a certain period Tpe 3> 1/, known as the lag time, is
required for the cell to recover the original exponential
growth if the NGS is not a cycle and the amount of
transporter chemical is sufficiently reduced therein; here,
the lag time T',, increases with starvation time T, in the

form T,y o Tftv for a certain range (up to some saturation
time) (see Fig. S4 of the SM [22] for an example and Sec. A
for more details). Here, the concentration of the transporter
gradually decreased during starvation, and the growth
recovery requires the regain of the transporter and the
alleviation of the jamming that occurred during the dormant
phase; as a result, the lag time increases with the starvation
time. The exponent f ranges approximately from 0.3 to 0.5,
depending on the network structures that alter the

intracellular reaction dynamics. This result is consistent
with the experimental measurements [44,45] (Fig. S5 of the
SM [22]).

Mean-field analysis.—To further investigate the mecha-
nism underlying the growth-dormant transition in terms of
dynamical systems theory, we constructed mean-field
models. First, we considered a model with one effective
concentration variable X and the associated complexes Y in
addition to the nutrient S [Fig. 3(a)]. It exhibits the growth-
dormant transition, whereas this model with minimal
structure requires the nonlinearity in transport a > 2 and
extremely small v < g,

Then, we considered another mean-field model that in-
corporates another variable T representing the mean field for
the concentration of the transporter(s) in addition to X re-
presenting the remaining non-nutrient chemicals [Fig. 3(b)].
The number of chemicals represented by X and T are
denoted by ny and nr, respectively. As only the complex
Y between X and T is considered for simplicity in this
model [46], it includes the AGS, S+ X - T + X and
S+ X - 2X, and the single NGS, T+ X<=Y. This
mean-field model reproduces common behaviors observed
for randomly generated networks, including discontinuous
growth-dormant transitions with v > p.. [Fig. 3(b)]. The
transition occurs when ny > ny = 1, and a larger number
ny of X leads to a larger S, (Fig. S9 of the SM [22]).

From the bifurcation analysis [Figs. 3(c) and 3(d)], we
found that the growth-dormant transition occurs as a cusp
bifurcation against changes in S, and v [47]. This
observation can explain discontinuous transitions and
hysteresis. Notably, although both the transporter 7" and
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the remaining chemicals X are essential for cell growth,
their competition leads to a flow field with mutual
inhibition as in the toggle switch at the intermediate value
of S.,. Furthermore, from the self-consistent equation for
the steady growth rate p*, we can determine where and how
the growth-dormant transition occurs [Fig. 3(e)].

Discussion.—In this Letter, we studied a model of
catalytic reaction networks wherein a variety of compo-
nents react via the formation of intermediate complexes.
This model exhibits discontinuous growth-dormant tran-
sitions against nutrient conditions as long as the formed
complexes have sufficient lifetimes (i.e., they have small v).
This transition to growth-arrested dormant phases is caused
by the accumulation of intermediate complexes in the NGS
under nutrient-poor conditions, which results in the jam-
ming of reactions in the AGS. Remarkably, other basic
characteristics of dormancy, i.e., hysteresis between the
exponential growth and dormant phases, the lag time for
growth recovery after starvation, and a trade-off between
the maximum growth rate y,,,, and the minimal nutrient
concentration S, to sustain growth (in other words, a sort
of sensitivity to nutrient scarcity) are also reproduced. The
above mechanism is general; any cellular metabolic system
allowing exponential growth must contain an AGS, and the
presence of a NGS could also be generic for complicated
reaction networks. Although we mainly investigated ran-
domly generated networks and mean-field models reduced
from them to reveal a general mechanism, a metabolic
reaction network simplified from real data [48] can also
show the growth-dormant transition (see Fig. S7 of the
SM [22]). Further studies of detailed, realistic models, such
as those including distributed parameters and more realistic
network structures, will be necessary to reveal how the
above fundamental characteristics of dormancy are pre-
served or changed by evolution.

These results indicate that growth-dormant transitions
and dormancy might be inevitable for cells that grow via
complex-forming catalytic reaction networks and likely
emerge without tuning by evolution or adaptation; thus,
even protocells at the primitive stage of life [49,50] are
expected to exhibit such transitions to dormancy, which
would be relevant to their survival under environmental
stress. In this Letter, the existence of intermediate com-
plexes is essential, while they can be any molecules.
Candidates for specific molecules include the complex
of ribosome and the ribosome-binding factors such as the
hibernation promoting factors [51] as well as the inter-
mediate metabolites of the citric acid cycle and the pentose
phosphate pathway [52].

The composition entropy H is predicted to increase
toward the transition point as a result of the competition
between the AGS and the NGS, which is experimentally
verifiable. From a biological perspective, the stringent
responses would increase the diversity of the intracellular
components [4,16,36].

We also analyzed the dynamics of mean-field models
and thereby demonstrated that the growth-dormant tran-
sition occurs as a cusp bifurcation, which supports the
discontinuity of the transitions as well as hysteresis. The
validity of the coarse-grained mean-field models implies
that the occurrence and mechanism of the growth-dormant
transition do not depend on details of the reaction networks;
e.g., it suggests the universality of the growth-dormant
transition across many-body reaction systems [53].

Finally, while this Letter examined the growth-dormant
transition primarily at the single-cell level, the behaviors
observed in practice often manifest at the population level,
which may be an intriguing avenue for future research. By
adopting stochastic simulations, the cell-to-cell variation
within a population can be computed, which will lead to the
emergence of a bimodal distribution in the hysteresis
regime [8,55].

In conclusion, our Letter explained the ubiquity and
fundamental characteristics of dormancy as general proper-
ties in reaction networks with complex formation by
offering a coherent view of cell growth and dormancy.
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