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Redundancy in biology may be explained by the need to optimize extreme searching processes, where
one or few among many particles are requested to reach the target like in human fertilization. We show that
non-Gaussian rare fluctuations in Brownian diffusion dominates such searches, introducing drastic
corrections to the known Gaussian behavior. Our demonstration entails different physical systems and
pinpoints the relevance of diversity within redundancy to boost fast targeting. We sketch an experimental
context to test our results: polydisperse systems.
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With the discovery [1] of Brownian non-Gaussian (BnG)
diffusion—a stochastic motion with a mean squared dis-
placement linearly increasing in time (Brownian or Fickian
behavior) and a non-Gaussian probability density function
(PDF) for the displacements—the expectation has been
raised [2] that the excess of probability for rare large
fluctuations might dominate first-passage processes, lead-
ing to unexpected phenomena. While BnG behavior found
numerous experimental [2–20] and molecular dynamics
[21–23] confirmations, at odds with expectation theoretical
analyses showed that typical Gaussian searches turn out to
be more effective than non-Gaussian ones [24–26]. In a
companion paper [27], where full references about the
available theoretical models for BnG diffusion are pro-
vided, we give a detailed account of this basic issue,
showing that for the large class of subordination processes
[28,29] the typical timescale for one searcher to reach the
target—e.g., the mean first passage time (MFPT)—is
indeed shorter in Gaussian than in non-Gaussian motion.
In the last years, however, an upsurge of studies and

commentaries [30–41] has pointed out that in many
situations such as fast activation processes in chemistry
and cellular responses in biology, the relevant timescale is
actually not the time spent by a given single searcher to
reach the target, but rather the time at which the first few
searchers, out of many, perform this task. A paradigmatic
example is human reproduction, in which a single sperm
cell out of M ∼ 108 finds and fertilizes the egg. The
computation of this time scale is a typical extreme statistics
problem that justifies the presence of redundancy in some

biological processes but that, so far, has been mainly
studied for normal Brownian motion.
In this Letter, we investigate the role that BnG motion,

and in general the class of subordination processes may
have on the extreme targeting problems. In particular, by
focusing on the diffusing diffusivity (DD) model [42], and
polydisperse polymer ensembles—equilibrium grand
canonical [43,44] and quenched [45]—we show that the
extreme-MFPT for non-Gaussian diffusion may become
orders of magnitude shorter than the Gaussian one. This
finding reveals a drastically different scenario with respect
to the ordinary MFPT problem, identifying extreme target-
ing as a natural setting in which the non-Gaussianity makes
a substantial difference.
Before going into the details of the calculations let us

provide a qualitative argument for our findings. As we
articulate in Ref. [27], models for BnG diffusion display an
excess of probability both in the central part and in the tails,
when compared with a Gaussian PDF of the same width
(see Fig. 1). The excess of probability in the central part of
the PDF, associated with a slower diffusion, is shown in
[27] to be responsible for the lower effectiveness of
non-Gaussian searches in ordinary targeting problems,
when one looks at the typical timescale for a particle to
reach the target. At a glance, this conclusion [24–26]
frustrates expectations [2] of novel phenomena in diffu-
sion-limited reactions driven instead by the “tail effect.”Yet,
if one considers the class of problems in which reactions are
activated by the first (or the first few) successful searchers
among many, the corresponding targeting timescale, the
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extreme-MFPT, is governed by rare trajectories which are the
few among the many to follow a quasigeodesic path to the
target [31,41]. Herewe argue that through the tail effect non-
Gaussianity adds to these rare events the possibility for the
searcher to diffuse faster (see Fig. 1) and hence it impacts
dramatically the extreme-MFPT, as we detail below.
Let us first briefly recall the theoretical context behind the

extreme-MFPT problem. Given M ≫ 1 independent (i.e.,
noninteracting) searchers, each with its own random arrival
time τi, the arrival time of the fastest one is defined as
TM ¼ min ½fτ1; τ2;…; τMg�. (More generally one can con-
sider Tk;M, namely, the time at which the k-fastest searches
have reached the target [40,41]; clearly, TM ≡ T1;M.) We
now include a possible heterogeneity for the diffusing
particles, assuming that their diffusion coefficients are
characterized either by a discrete steady-state probability
mass function p�

DðDnÞ (n ¼ 1; 2;…) or continuous PDF
p�
DðDÞ, with average E½D�≡Dav. Since the searchers are

independent, the statistics of TM can be computed from the
one of a single particle. Denoting by 0 ≤ Pðτi > tÞ ≤ 1 the
one-particle survival probability, and by SDn

ðtÞ the survival
probability of a generic particle with diffusion coefficient
Dn, the probability associated with the extreme statistics
is PðTM > tÞ ¼ Q

M
i¼1 Pðτi > tÞ ¼ Q

n ðSDn
ðtÞÞMn , where,

by the law of large numbers,Mn ¼ Mp�
DðDnÞ is the number

of searchers with diffusion coefficient Dn. The extreme-
MFPT, E½TM� ¼

R∞
0 dtPðTM > tÞ is thus

E½TM� ¼
Z

∞

0

dt exp

�
M
X

n

p�
DðDnÞ lnSDn

ðtÞ
�
: ð1Þ

Here and below, are the substitutions
P

n ↦
R
dD,Dn ↦ D

understood if p�
D is a PDF instead of a probability mass

function. Note that by choosing p�
DðDÞ ¼ δðD −DavÞ,

Eq. (1) recovers the ordinary approach, appropriate for a
Gaussian diffusion in which all particles share the same
diffusion coefficient Dav. Despite the hypothesis of inde-
pendent searchers enormously simplify the computation of
PðTM > tÞ, the full explicit expression of SDn

ðtÞ is often
unknown and approximations are needed. The assumption
M ≫ 1 suggests that the computation of PðTM > tÞ can be
approximated by the short-time behavior of SDn

ðtÞ, where
SDn

ðtÞ ≃ 1. This is usually done by solving explicitly the
boundary problem of the associated Fokker-Planck equation
and taking the small time approximation of the correspond-
ing survival probability [31,32,46,47]. For several targeting
processes with varying space dimensions, boundaries, and
shape of the target (if small enough), most results have been
shown to fall into a universal category of extreme events
statistics. This is due to the fact that the most effective rare
trajectories almost followageodesic path to the target [31,41]
of length l, which is a straight line in a homogeneous and
isotropic environment. It is thus paradigmatic to address the
one-dimensional case for which

SDn
ðtÞ ¼ erf

�
l
ffiffiffiffiffiffiffiffiffiffi
4Dnt

p
�

≃
t→0þ

1 −
e−

l2
4Dnt

ffiffiffiffiffiffiffiffiffiffi
4Dnt

p
ffiffiffi
π

p
l

; ð2Þ

implying

E½TM�¼
Z

∞

0

dt exp

�
−M

�X

n

p�
DðDnÞ

e−
l2

4Dnt
ffiffiffiffiffiffiffiffiffiffi
4Dnt

p
ð ffiffiffi

π
p

lÞ
��

: ð3Þ

For large M this integral can be approximated [30] as
E½TM� ≃

R t0
0 dt ¼ t0, with t0 solution of

M
X

n

p�
DðDnÞ

�
e−

l2
4Dnt0=

� ffiffiffi
π

p
l

ffiffiffiffiffiffiffiffiffiffiffiffi
4Dnt0

p
��

¼ 1: ð4Þ

It is convenient at this point to define

τav ≡ l2

2Dav
; ð5Þ

which represents the characteristic time for a particle with
an average diffusion coefficient Dav to travel over the
distance l. As outlined in the Supplemental Material [48],
taking p�

DðDÞ ¼ δðD −DavÞ in Eq. (4) yields the standard
Gaussian result [30,49–51]

E½TM�=τav ≃
M≫1

1=ð2 lnMÞ ðGaussianÞ; ð6Þ

which highlights how a large number of searchersM reduces
the extremeMFPTwith respect to the typical time taken by a
particle to diffuse over the distance l.
Let us now focus on classes of subordination processes

XðtÞ displaying BnG diffusion. These can be introduced via
the stochastic differential equation

FIG. 1. Comparison between Gaussian and non-Gaussian PDFs
for subordination processes. The two PDFs share the same mean
and standard deviation but the non-Gaussian one has an excess
probability both in the tails and in the center part. The non-
Gaussian PDF is obtained from the FSP model with p ¼ 0.99
(see text).
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dXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p
dBðdtÞ; ð7Þ

where BðtÞ is a Wiener process (Brownian motion) and
DðtÞ describes the fluctuations in time of the diffusion
coefficient. By defining the subordinator as SðtÞ≡
2
R
t
0 dt

0Dðt0Þ, Eq. (7) can be reformulated in the random
path or subordination representation dXðtÞ ¼ dBðdSÞ
[42,52–54]. Depending on the statistical properties of
DðtÞ, and hence of the subordinator SðtÞ, several stochastic
processes can be described by Eq. (7). For example, if
DðtÞ ¼ Y2ðtÞ and YðtÞ is a dY-dimensional Ornstein-
Uhlenbeck process (dY ¼ 1; 2; 3;…), we have the DD
model [42]. In the context of financial markets, under
the name of stochastic volatility models they are used to
correct the Black-Scholes theory for non-Gaussian effects
[55,56]. Another possibility [52–54] is DðtÞ ¼ D1=NαðtÞ,
with α > 0 and NðtÞ ≥ 1 a birth-death process (N only
changes by �1) [57]. In this case Eq. (7) describes the
motion of the center of mass of polymers of size N
exchanging monomers with a chemostat [43,44], namely,
grand canonical polymers (GCP), and D1 is the diffusion
coefficient of a single monomer in solution. Taking α ¼ 1
one has the Rouse approximation, whereas for the Zimm
model α ¼ ν [58], ν being equal to 1=2 for ideal, and
0.588… for self-avoiding chains [43]. This model intro-
duces the concept of critical fluctuations in the diffusion
coefficients, inherited by those of the polymer size NðtÞ
close to the critical point [43,44].
Distinctive properties of the stochastic process DðtÞ are

its stationary distribution p�
D, and the autocorrelation time

τ. For the DD model τ is a free parameter; in the GCP
model τ is determined by the reaction rate constants of
the birth-death process and it diverges at criticality (critical
slowing down). Consider a situation in which the diffusion
coefficients of the heterogeneous particles are initially
distributed according to p�

D. For time t ≪ τ each diffusing
particle retains its initial diffusion coefficient, and the
behavior of the system is described by a statistical
average over p�

D. In the literature, such a superposition
of statistics has been named superstatistics (SS)
[2,17,59,60]. During the SS regime, pXðx; tjx0Þ presents
non-Gaussian features like those reported in Fig. 1. On
the other hand, as t ≫ τ, the probability of the scaled
subordinator SðtÞ=t concentrates around its average value
2Dav, the central part of pXðx; tjx0Þ becomes Gaussian,
and as time passes by non-Gaussianity is relegated to
lesser and lesser probable fluctuations. This regime is
thus associated with a large deviation (LD) principle [61],
and the extreme-MFPT tends to the behavior in Eq. (6).
The comparison between τ and E½TM� determines whether
the extreme search involves or not BnG features: The
analysis of the extreme-MFPT within the SS (LD)
approximation is applicable to situations where E½TM� ≪
τ (E½TM� ≫ τ).

In the Supplemental Material [48] it is reported the
steady-state PDF p�

DðDÞ for the DD model in arbitrary
dimension dY . Within the SS approximation, we show that

E½TM�=τav ≃
M≫1

dY=ðlnMÞ2; ðDD modelÞ: ð8Þ

Note that the 1= lnðMÞ dependence of Eq. (6) is here
replaced by 1=½lnðMÞ�2. On the contrary, if E½TM� ≫ τ,
Eq. (6) applies. We thus appreciate that the extra probability
for rare large fluctuations associated with the non-Gaussian
tails of the DD model in the SS regime drastically reduces
the extreme MFPT with respect to Gaussian searches
performed with the average diffusion coefficient. Such a
reduction is particularly visible in Fig. 2 for τ ¼ 1, where
the relation E½TM� ≪ τ is satisfied for the whole range ofM
and simulations of the DD model are nicely in agreement
with the full theoretical estimate for the SS regime reported
in Eq. (S16) of the Supplemental Material [48]. When
τ ¼ 0.1, as M decreases a crossover occurs from the SS
regime ∼ðlnMÞ2 to the LD one ∼ lnM. This is highlighted
also in the inset of Fig. 2, by keepingM fixed and varying τ.
The SS regime for the GCP model has a simple, practical

experimental implementation: A polydisperse sample pro-
duced in a step-growth polymerization [62]. Whereas for
GCPs the polymerization or depolymerization process
continuously occurs over time while system and chemostat
exchange monomers, in the polydisperse case polymeriza-
tion terminates after the initial outgrowth and the sample
constantly remains in the SS regime withD a static random
variable. Taking for simplicity chains with exactly one

FIG. 2. Extreme-MFPT for the DDmodel (orange or gray in the
gray scale version) and the Gaussian one (black) vs M. Note that
the ratio E½TM�=τav does not depend on l and Dav. Symbols refer
to numerical simulations, while solid lines are theoretical
estimations from Eqs. (S8) (black) and (S16) (orange or gray
in the gray scale version) of the Supplemental Material [48].
Simulations are with dY ¼ 1 and for different values of τ (details
are reported in the Supplemental Material [48]). Inset: Crossover
between the SS and the LD regime, attained upon changing τ at
fixed M.
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reaction center in the end, one can equivalently address the
SS regime of GCPs considering a heterogeneous sample
distributed according to the Flory-Schulz size distribution
[45] p�

NðnÞ ¼ ð1 − pÞpn−1, where 0 ≤ p ≤ 1 is the polym-
erization extent. We will refer to this as Flory-Schulz
polydisperse (FSP) model. As p → 1−, the average poly-
mer size E½N� ¼ 1=ð1 − pÞ diverges and the system
becomes critical [43,44,53]. Correspondingly, Dav tends
to zero and τav diverges. The analysis reported in the
Supplemental Material [48] for Rouse polymers yields

E½TM�
τav

≃
Mð1−pÞ≫1

−
ð1−pÞ lnð1−pÞ
2p ln½ð1−pÞM� ðFSPmodelÞ; ð9Þ

where, in consistency with our approximations, we have
assumed a sufficiently large number of searchers such that
M ≫ ð1 − pÞ−1. In the LD regime, the extreme MFPT of
GCPs is again described by Eq. (6). Comparison of Eq. (9)
with Eq. (6) reveals that while Gaussian searches take an
infinite time to be accomplished as the system approaches
criticality and τav diverges, non-Gaussian ones are still
realized within a finite time. This means that wild fluctua-
tions in the polymer size induce such heavy tail effect in
pXðx; tjx0Þ to keep the extreme-MFPT finite, eluding the
critical slowing down for this kind of search. One might
argue that since this analysis applies to the center of mass of
the polymer which is an immaterial point in space, is of
limited practical relevance. However, our results indicate
that the instances which reach the target under non-
Gaussian heterogeneous conditions are precisely those fast
diffusers responsible for the tail effect. These are the
polymers with a small size, for which the Rouse time of
the chain [58] is very small, and hence their center-of-mass
dynamical timescale corresponds to that of any monomer
unit acting in practice as a ligand. We may add that this
example shows that heterogeneity supplements to extreme
searches the concept of fitness: In a heterogeneous sample
not only the geodesic path to the target is followed in
extreme searches, but the successful searcher happens to
belong to the fittest subset (in our case, the fastest, small-
size polymers). In analogy with the previous plots, simu-
lations in Fig. 3 confirm our analytical predictions for the
FSP model.
It is interesting to point out that, at variance with the DD

model, the extreme-MFPT for the polydisperse polymers
displays the same 1= lnðMÞ dependence of the Gaussian
case. This is to be ascribed to the sharp large-value cutoff at
Dn ¼ D1 of the p�

DðDnÞ distribution. To clarify this point,
we have analyzed a class of generalized gamma distribu-
tions [63] p�

DðDÞ ∼
D→∞

expf−½Aðν; ηÞD=Dav�ηg, with the

parameter η characterizing different tail behaviors. The
same procedure used for the other models gives

E½TM�=τav ≃
M≫1

½Dðν;ηÞ= lnðMÞ�ðηþ1Þ
η ðgen GammamodelÞ;

ð10Þ

where the full expression of the coefficient Dðη; νÞ is
provided in the Supplemental Material [48]. On the one
hand, for η ¼ 1 (exponential tail) we recover the DD result,
namely, 1=½lnðMÞ�2. On the other hand, in the limit η → ∞
for which the tail of p�

DðDÞ drops sharply approaching the
step function decay of the FSP model, we recover the
1= lnðMÞ dependence. The result in Eq. (10) shows
explicitly that (a) There is no universal behavior in M
when we move outside of the Gaussian regime; (b) For
random diffusivity model it is the tail of the diffusivity
distribution that decides such a trend.
The origin of non-Gaussianity that we have addressed is

amenable to the heterogeneity of the ensemble of diffusers
and/or of the environment [64]. Such heterogeneity implies
both an excess of probability in the central part and in the tails
of the displacements distribution, when compared with the
Gaussian one [27]. We have shown that a higher probability
for few, faster diffusers (tail effect) influences extreme
searches, pointing out that a redundant information stored
in diverse searchers strongly enhances the fast targeting of
the first few instances. Non-Gaussianity is both disadvanta-
geous [27] and advantageous. It is disadvantageous when the
activation of a biological function needs a large percentage of
ligands to bind receptors; it is advantageous when only a few
searchers, among many, are required to reach the target. The
latter is the typical situation in which diffusing particles are
carriers of information, like in human reproduction. For this
kind of search, diversity appears to be an efficient strategy to
be recognized in evolutionary examples, and exploited in the
design of efficient deliveries. A straightforward setup for
experimental confirmation of our results is that of poly-
disperse polymers.
More broadly, we expect this investigation to open

prospects in understanding the role of heterogeneity in

FIG. 3. Extreme-MFPT for FSP model (cyan or gray in the gray
scale version). In analogy to Fig. 2, symbols refer to numerical
simulations, while solid lines are theoretical estimations from
Eqs. (S8) (black) and (S23) (cyan or gray in the gray scale
version) of the Supplemental Material [48]. Inset: behavior with
respect to p at fixed M; the solid line indicates the theoretical
trend from Eq. (9). Simulation details are reported in [48].
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diffusion transport phenomena, for instance in models
where the BnG behavior has been discovered [2–19],
and likewise in the world of anomalous processes where
the mean squared displacement grows nonlinearly in time.
Indeed, recent single-particle tracking experiments in
crowded environments—such as those of biological
cells—show that heterogeneity manifests itself not only
in the variability of transport coefficients [65], but also in
fluctuations of the anomalous diffusion exponent [66–76].
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