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Chern insulators, and more broadly, topological insulators, present an obstruction to the construction of
exponentially localized electronic Wannier functions. This implies a fundamental difficulty in determining
whether such insulators exhibit electric polarization. Here, we show that these insulators can indeed exhibit
bound charges and adiabatic currents consistent with changes in bulk polarization over space and time,
respectively. We also show that the change in polarization across crystalline domains within these strong
topological insulators is quantized in the presence of crystalline symmetries.
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The concept of electric polarization is essential for
understanding insulating materials and topological phases
of matter. Although heuristically understood as the electric
dipole moment per unit volume, its determination in
crystalline materials is subtle [1,2]. In the 1990s, a correct
definition of polarization was formulated in terms of the
Berry phase of the Bloch wave functions across the
Brillouin zone [1–6]. The Berry phase encodes the posi-
tions of the spatially resolved Wannier functions, so-called
“Wannier centers,” which further facilitates establishing the
bulk-boundary correspondence for polarization. However,
recent explorations of topological insulators have revealed
that a Wannier representation is not always possible [7,8]
and thus, whether the concept of polarization can be
extended beyond the Wannier center picture has gained
relevance and remains an open question in topological
band theory.
In this Letter, we show that Chern insulators can exhibit

electric polarization. Our argument circumvents the seem-
ingly ill-defined nature of the bulk polarization in these
insulators by observing that the physical manifestations of
polarization—electronic bound charges and adiabatic cur-
rents—are proportional to changes in polarization, and not
the polarization itself. We demonstrate that these changes
are well defined in Chern insulator phases. Furthermore, we
show that under crystalline symmetries, the bound charges
that appear at interfaces between crystalline domains within
these insulators are fractionally quantized, carrying topo-
logical states along with them. Finally, we develop a finer
topological identification and classification that captures
the physical observables at these crystalline domain inter-
faces. We construct our arguments using two systems:
a tight-binding model and an experimentally realizable
microwave photonic crystal, both with nonvanishing Chern
number, and then generalize our observations to the case of
time-reversal polarization in quantum spin Hall (QSH)

insulators and 3D topological insulators (TI). Our work
settles a long-standing question and deems bulk polariza-
tion as the fundamental quantity with a “bulk-boundary
correspondence,” regardless of whether a Wannier repre-
sentation is possible.
In crystalline insulators, the electric polarization P is

defined in terms of Berry phases along the noncontractible
loops of the Brillouin zone [4] or, equivalently, in terms of
the Wannier centers of the occupied bands [1,9,10]. In 2D
crystalline insulators with primitive lattice vectors ai¼1;2,
the bulk polarization P ¼ P1a1 þ P2a2 has components
Pi ¼

H
d2kTr½AiðkÞ�, where Ai is the Berry connection

with components ½AiðkÞ�m;n ¼ −ihumðkÞj∂ki junðkÞi, and
jumðkÞi is the Bloch eigenstate of occupied band m at
crystal momentum k ¼ ðk1; k2Þ. The components of P can
also be written as Pi ¼

H
dkjpiðkjÞ, where

piðkjÞ ¼
1

2π

I
dkiTr½AiðkÞ� mod 1 ð1Þ

is the kj sector polarization, for i, j ¼ 1, 2; i ≠ j.
Chern insulators are paradigmatic topological materials

that are insulating in the bulk but have conducting chiral
edge states [7,8]. In Chern insulators, piðkjÞ winds around
the 1D Brillouin zone formed by kj ∈ ½−π=aj; π=ajÞ. This
winding simultaneously reflects the difficulty in building
exponentially localized Wannier functions [11,12] and
defining the bulk polarization [13]. Furthermore, the chiral
edge states that cross the Fermi level complicate establish-
ing the bulk-boundary correspondence to polarization
because the bound charge, if it exists, would be affected
by the partial occupation of its chiral edge states [13].
To address the question of polarization in strong topo-

logical insulators, our starting point is to focus on the
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associated physical observables. Consider the interface
between two insulating domains, R1 and R2. A charge
density σ arises due to the difference in polarization
across this interface, following the “interface-charge
theorem” [1,5],

σ ¼ ½PðR1Þ − PðR2Þ� · n̂ mod 1; ð2Þ

where we have set the unit cell lengths in all directions and
the electronic charge to unity for simplicity, and n̂ is the
vector normal to the interface. If domains R1 and R2 have
inequal Chern numbers, i.e., C1 ≠ C2, jC1 − C2j topologi-
cally protected chiral edge states will appear at their
common interface, rendering it metallic. This, in conjunc-
tion with the aforementioned winding of piðkjÞ, makes the
definition of polarization and its bulk-boundary correspon-
dence problematic. Coh and Vanderbilt studied how a
definition of the polarization might be saved in the case
C1 ¼ 1, C2 ¼ 0, but only with the knowledge of the wave
vector at which the (partial) occupancy of the edge state is
discontinuous [13].
Here, we instead consider Chern insulator domains in

which C1 ¼ C2, such that pðαÞ
i ðkjÞ [Eq. (1)], for domains

α ¼ fR1; R2g, individually wind, but where the difference
in k-sector polarizations across the two domains,

ΔpiðkjÞ ¼ pðR1Þ
i ðkjÞ − pðR2Þ

i ðkjÞ, does not wind, and is
nonzero. The key insight here is that this configuration
preserves the non-trivial nature of the Chern insulator but
allows for insulating interfaces between crystalline
domains within its bulk, which can be probed for responses
to spatial changes in polarization. As we shall see, this
insight will enable a physical notion of polarization that
yields measurable observables, i.e., bound charges consis-
tent with Eq. (2). We will also show that adiabatic
variations of polarization within Chern insulators can result
in the pumping of charges via currents. Taken together,
both observables (bound charges and currents) are suffi-
cient to demonstrate that crystals without a Wannier
representation can exhibit a response to polarization.
We first present the accumulation of electronic bound

charge at the interface between crystalline domains within a
Chern insulator using a two-band tight-binding model
described by the following generalized Qi-Wu-Zhang
(QWZ) Hamiltonian,

hQWZðk; θÞ ¼ sin kxσx þ sinðky þ θÞσy
þ ½mþ cos kx þ cosðky þ θÞ�σz: ð3Þ

Here k ¼ ðkx; kyÞ is the crystal momentum, σx;y;z are the
Pauli matrices and m is a mass term. For θ ¼ θ� ¼ 0
and π, this Hamiltonian possesses inversion symmetry,
Ihðk; θ�ÞI−1 ¼ hð−k; θ�Þ, with I ¼ σz. The Hamiltonian
in (3) is gapped for all values of k and θ. The value of m
sets the Chern number C for the bands, with C ¼ 1 for

0 < m < 2. The plots of pxðkyÞ for m ¼ 0.25 and for
θ� ¼ 0 and π exhibit a nontrivial winding due to a nonzero
Chern number [Figs. 1(a) and 1(b)]. Under open boundaries
along one direction, i.e., with vacuum on the exterior, these
systems host chiral edge states as seen from their energy
bands [Figs. 1(d) and 1(e)].
We now consider two adjacent domains, R1 and R2, with

Bloch Hamiltonians hR1
ðkÞ ¼ hQWZðk; 0Þ and hR2

ðkÞ ¼
hQWZðk; πÞ, respectively. Although hR1

and hR2
have a

winding in piðkjÞ, the quantity pð1Þ
i ðkjÞ − pð2Þ

i ðkjÞ does not
wind [Fig. 1(c)] [14]. Crucially, the difference in polari-
zation across the interface separating the two domains,
ΔPi, given by

ΔPi ¼
I

dkjΔpiðkjÞ; ð4Þ

is quantized to 1
2
, due to inversion symmetry.

To explore the consequences of this non-zero difference
in polarization, we consider a finite, inversion-symmetric
system that consists of the two domains described by hR1

and hR2
as shown at the bottom of Fig. 1(f). In this system,

we observe the appearance of nonchiral edge states in the
energy bands [Fig. 1(f)]. As a result of this and the presence
of inversion symmetry, fractional charge densities (per unit
length) quantized to� 1

2
appear at each of the two interfaces
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FIG. 1. (a),(b) pxðkyÞ for the occupied band of hQWZðk; 0Þ
and hQWZðk; πÞ, respectively, for m ¼ 0.25. (c) ΔpxðkyÞ for
hQWZðk; 0Þ and hQWZðk; πÞ. (d),(e) Energy bands for hQWZðk; 0Þ
and hQWZðk; πÞ, respectively, with open boundaries as depicted
in the bottom panels. The chiral edge states are highlighted in
blue and orange. (f) Energy bands for an inversion-symmetric
configuration consisting of two domains described by hQWZðk; 0Þ
and hQWZðk; πÞ as depicted in the bottom panel. The system has
periodic boundaries imposed along both directions and has two
internal interfaces. The nonchiral edge states at these interfaces
are highlighted in red.
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at exactly half filling [15] [Fig. 2(a)]. This is consistent with
the theorem in Eq. (2) and is analogous to the expected
response to polarization in conventional insulators. We
emphasize that the distinction between the two Chern
insulator domains is solely due to crystalline symmetry.
Breaking this symmetry can render them indistinguishable
without closing the band gap.
We next turn our attention to the second physical

observable associated with polarization—a current density
in the bulk that appears due to an adiabatic change in
polarization in time. We probe the existence of bulk
currents via the bound charges that appear at crystalline
domain interfaces within a Chern insulator in the system
considered above. To show this, we adiabatically evolve the
domain R2 in Fig. 1(f), by changing the parameter θ as
θðtÞ ¼ tþ π, i.e., hR2

¼ hQWZðk; tþ πÞ for the parameter
t∈ ½0; 2πÞ, while keeping the domain R1 constant, i.e.,
hR1

¼ hQWZðk; 0Þ. The two domains remain gapped in the
bulk for the full cycle of the adiabatic parameter. During a
single pump cycle, we observe that the bound charges
exhibit a change of �1 unit of charge [Fig. 2(b)]. The fact
that a single unit of charge is pumped during the cycle at
the boundaries implies, by continuity, that this charge is
also pumped from the left to the right of each unit cell,
giving rise to a current density in the bulk of the Chern
insulator domain R2. While this last statement would be
trivial in the case of a Wannierizable system, it is not so in
the absence of a Wannier representation.
We have seen that inversion symmetry quantizes the

difference in polarization in Chern insulators to 0 or 1
2
, and,

correspondingly, the bound charges to 0 or � 1
2
units. This

implies the existence of weak topological phenomena [16] at
crystalline interfaces within inversion-symmetric Chern
insulators. To explore this further, we consider the description
of inversion-symmetric insulators using symmetry indicators.
A set of crystalline energy bands in class A of the tenfold

classification under inversion symmetry is characterized by
an index given by [17–20]

χ ¼
�
Cj½X�; ½Y�; ½M�

�
; ð5Þ

where C is the Chern number and the symmetry indicators
[Π] are defined as ½Π�≡ #Π − #Γ, where #Π is the number
of states within the bands of interest with inversion eigen-
value þ1, at the high-symmetry point (HSP) Π. The set of
single isolated Wannierizable bands can be enumerated
exhaustively starting from symmetric Wannier functions
centered at maximal Wyckoff positions [Fig. 3(d)] [21–23]
(see Ref. [24] for more details).
Insulators with a vanishing Chern number, whose

occupied bands are characterized by the index χ are
deformable to either atomic limits or fragile phases. For
such insulators, the polarization (with respect to vacuum)
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FIG. 2. (a) The charge density at half filling for the system
shown in Fig. 1(f). Under inversion symmetry, the bound charges
at the interfaces are quantized to �0.5. (b) The bound charges at
the left (L) and right (R) interfaces under an adiabatic change in
the polarization as a function of t. Inversion symmetry is present
at t=2π ¼ 0 and 0.5.
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FIG. 3. (a) The transverse magnetic (TM) band structure of the
photonic crystals with unit cells shown in the inset. The high-
symmetry points are labeled by inversion eigenvalues for both
unit cell configurations. (b),(c) TheWilson loop spectrum of band
3 for the contracted and expanded unit cells, respectively.
(d) Maximal Wyckoff positions in an inversion-symmetric unit
cell. (e) The frequency spectrum of an inversion-symmetric
system made of the two types of unit cells with two interfaces.
In-gap edge states (dotted lines) are localized at the interface
between the two domains. (f) The Ez mode profile for corner
states that arise at the corners between the two Chern photonic
crystals in a “core-cladding” geometry. The inner core domain
(dashed box) consists of the expanded unit cell type and the outer
cladding domain consists of the contracted unit cell type.
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can be calculated as PðχÞ ¼ ð1=2Þð½Y� þ ½M�Þa1 þ
ð1=2Þð½X� þ ½M�Þa2, where a1 and a2 are the primitive
lattice vectors [17,18]. Additionally, some configurations
can lead to higher-order topological corner states for both
atomic limits and fragile phases, determined by the corner
charge index QðχÞ ¼ ð1=4Þð−½X� − ½Y� þ ½M�Þ [17,18,25].
Both PðχÞ and QðχÞ are defined modulo a unit electronic
charge.
For a pair of Chern insulator domains characterized by

indices χ1, χ2, with the same Chern number C1 ¼ C2 ¼ C,
the relative index, Δχ ¼ χ2 − χ1, defined as Δχ ¼
ðC2 − C1j½X�2 − ½X�1; ½Y�2 − ½Y�1; ½M�2 − ½M�1Þ, has a van-
ishing Chern component and describes either an atomic
limit or a fragile phase. As a result, while PðχαÞ and QðχαÞ
for α∈ f1; 2g, are ill defined for the Chern insulators
individually, the difference in polarization, ΔP ≔ PðΔχÞ,
and relative corner charge index, ΔQ ≔ QðΔχÞ, are mean-
ingful. These quantities are associated with physical
observables, i.e., edge and corner states are expected to
appear at the interface between the Chern insulator domains
described by χ1 and χ2, with nonzero ΔP and ΔQ.
In the tight-binding example studied in Fig. 1(f), we have

already seen the appearance of such edge states induced by
a nonzero difference in polarization across the boundary.
We now show the generality of this framework by dem-
onstrating the presence of polarization-induced edge and
corner states in experimentally realizable microwave pho-
tonic crystals (PhCs) that do not admit a tight-binding
description [26–30].
The unit cells of the proposed inversion-symmetric, two-

dimensional PhCs consist of two dielectric discs made out
of yttrium-iron-garnet (YIG) (ε ¼ 15), a strong magneto-
optical material at microwave frequencies [inset Fig. 3(a)].
These two unit cell types are related by a shift of a=2 in
both x and y directions, where a is the lattice constant, and
we refer to them as “contracted” and “expanded.” Time-
reversal symmetry is broken by applying a magnetic field in
the z direction. We calculate the band structure for PhCs
with these unit cells using theMIT Photonic Bands package
[31] [Fig. 3(a)]. Using the inversion eigenvalues at HSPs
for both unit cell types, we determine the χ indices and Δχ
for the first four TM bands (see Ref. [24] for details). This
analysis shows that bands 1 and 2 are atomic limits, with
Wannier centers at the 1a ð1bÞ position for the contracted
(expanded) unit cell. Band 3 acquires a Chern number of
þ1 for both unit cell types [Figs. 3(b) and 3(c)], and
similarly, band 4 has a Chern number of þ1. For all four
bands, the difference in polarization between the contracted
and expanded PhCs, ΔP, is equal to 1

2
ða1 þ a2Þ, and the

relative corner charge index, ΔQ, is equal to 1
2
.

To explore the bulk-boundary correspondence associated
with nonzero ΔP and ΔQ for the Chern bands, we first
simulate a configuration consisting of an inner domain with
the expanded unit cell and an outer domain consisting of
the contracted unit cell, as shown in Fig. 1(f). We observe

that the frequency spectrum contains polarization-induced
nonchiral edge states, similar to those found in the tight-
binding example [Fig. 3(e)]. We note that such edge states
have been previously reported in PhC- and waveguide-
based systems and may be useful for certain photonic
applications [32,33]. Next, we simulate a finite system in a
“core-cladding” type of geometry and find corner states
[Fig. 3(f)]. Using a filling anomaly argument, we show in
[24] that the edge and corner states originate from multiple
Chern bands and, therefore, have a topological origin
[17,18]. The observed boundary states thus clearly dem-
onstrate the meaningfulness of ΔP and ΔQ as weak
topological invariants in Chern insulators.
The weak topological phenomenon discussed so far can

be extended to QSH and 3D TI cases. In Fig. 4(a), we
consider the interface between two crystalline domains in a
QSH insulator with a nontrivial Z2 invariant, ν0 ¼ 1. Its
boundary with vacuum hosts helical edge states that are
Kramers degenerate at time-reversal invariant momentum
(TRIM) points [34,35]. However, the interface between the
two QSH domains, at half filling, can either exhibit trivial
gapped states, when the helical edge states of each domain
cross and hybridize at the same TRIM point [Fig. 4(b)],
or (weak) topological gapless states, where the helical
edge states of each domain cross at different TRIM points
[Fig. 4(c)]. Although the two QSH domains have the same
nontrivial strong Z2 invariant, the presence or absence of
boundary states at their common interface is characterized
by the difference in time-reversal polarization, which is a

FIG. 4. (a) An interface between two quantum spin Hall
insulators with the same nontrivial Z2 invariant can host either
(b) a gapped trivial phase where the two pairs of helical edge
states cross at the same TRIM point and hybridize or (c) a gapless
nontrivial phase where the two pairs of helical edge states cross at
different TRIM points. (d) An interface between two 3D TIs with
the same strong invariant can host either (e) a gapped trivial phase
where the two surface Dirac cones sit at the same TRIM point
and hybridize or (f) a gapless nontrivial phase where the two
surface Dirac cones sit at different TRIM points. EF marks the
Fermi level.
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weak Z2 invariant [36]. A similar argument applies to
3D TIs protected by a strong topological index ν0 [37]
[Figs. 4(d)–4(f)].
In this Letter, we have argued that strong topological

insulators (Chern insulators, QSH insulators, 3D TIs) can
exhibit a well-defined response to electric polarization
because they manifest its associated bulk-boundary corre-
spondence and transport properties. To unveil this, we have
used interfaces across different crystalline domains within
the same strong topological phase as probes, thus avoiding
the gapless boundary modes originating from strong top-
ology. The presence of crystalline symmetries quantizes the
responses, making the polarization a weak topological index
that determines the existence of first- and higher-order
topological states, which can be explored in various plat-
forms such as the proposed photonic crystals [30], optical
waveguide arrays [33,38,39], coupled ring resonators [40], as
well as in topological insulators with grain boundaries [41].
We note that previous works have found other manifes-

tations of bound charge and responses to weak indices in
Chern insulators, such as at dislocations and disclinations
[42–47].
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