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Recently, the intriguing phenomenon of emergent inductance has been theoretically proposed and
experimentally observed in nanoscale spiral spin systems subjected to oscillating currents. Building upon
these recent developments, we put forward the concept of emergent inductance in strongly correlated
magnets in the normal state with spin fluctuations. It is argued that the inductance shows a positive peak at
temperatures above the ordering temperature. As for the frequency dependence, in systems featuring a
single-band structure or a gapped multiband, we observe a Drude-type inductance, while in gapless
multiband systems, a non-Drude inductance with a sharp dip near zero frequency. These results offer
valuable insights into the behavior of strongly correlated magnets and open up new possibilities for
harnessing emergent inductance in practical applications.
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Introduction.—Noncollinear magnets show a variety of
intriguing phenomena such as multiferroics of spin origin
[1–3], topological protection of spin textures [4,5], and
various kinds of Hall effects [6–12]. The underlying
principle of these phenomena is the emergent electromag-
netic field [EEMF; magnetic (h) and electric (e) fields] [13]
associated with the spin Berry connection aμ (μ ¼ 0ðtÞ;
i ¼ 1, 2, 3) defined by the spin direction field nðr; tÞ as

hi ¼ ð∇ × aÞi ¼
ℏc
2e

ðεijkn · ∂jn × ∂knÞ; ð1Þ

where εijk is the totally antisymmetric tensor, and

ei ¼
1

c
∂a0
∂xi

−
∂ai
∂t

¼ ℏc
2e

ðn · ∂in × ∂tnÞ: ð2Þ

According to these formulas, it is theoretically predicted that
the coupling of spins of conduction electrons to the spin
fluctuation fields induces the emergent inductance in
strongly correlated spiral magnets [14]. Later, it is experi-
mentally demonstrated in Gd3Ru4Al12 [15] and YMn6Sn6
[16]. Also, emergent inductance in Rashba spin-orbit-
coupled spiralmagnets has been theoretically proposed [17].
In respect to the applications, the frequency dependence

and the quality factor Q are important issues. At present,
the experiments show the rapid decay of inductance as the
frequency increases above ∼10 kHz, and the quality factor
Q is less than a few percent. This characteristic frequency is
considered to be due to the collective dynamics of the
ordered spin system. Typically, the dynamics is charac-
terized by the energy scale αJ, with the Gilbert damping
constant αð∼0.01Þ and the exchange coupling J of the order
of 1 meV. It is noteworthy that the energy scale corresponds
to the order of 1 GHz, which is much larger than the

observed one but much smaller than the conduction
electrons’ that is typically of the order of 1 THz.
Therefore, in the present Letter, we propose a novel

mechanism to improve the frequency dependence of the
emergent inductance, utilizing the rapid quantum and
thermal spin fluctuation in a spin liquid with higher energy
than that of ordered moments. To explore this phenomenon,
we employ the U(1) slave-fermion theory, where the spin
Berry connection a appears naturally as the phase of the
singlet correlation of neighboring spins, which can also be
interpreted as the gauge potential. Namely, a in Eqs. (1) and
(2) can be formulated in the slave-fermion gauge theory
[18], and its dynamics is given by the current-current corre-
lation function, which determines the physical response.
Moreover, in this formalism, the electrons undergo fractio-
nalization into spinons and holons. Importantly, the spinons
possess significantly longer lifetimes compared to the
holons, leading us to anticipate the emergence of spinonic
inductance in the low-frequency regime. Remarkably, the
spinon inductance is physically observable according to
the Ioffe-Larkin composition rule [19], which is implied by
the coupling between spinons and holons through the gauge
field a in the Schwinger boson method [20] or U(1) slave-
fermion theory [21].
Our findings, which are illustrated by several systems

including a 1D spin chain, 1D spin ladder, 2D square, 2D
honeycomb, and 2D kagome lattices, can be summarized as
follows. First, we observe that the inductance displays a
positive peak at temperatures higher than the “ordering
temperature” [see the upper panel of Fig. 1(a)]. Note that
the ordering temperature here means the characteristic
temperature where the correlation length grows rapidly
since there is no long range ordering in 1D and 2D
Heisenberg models at finite temperatures. This behavior
is attributed to the increased resistivity and inductance as
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the system becomes less metallic near the spinon phase
transition temperature. At much higher temperature, as the
system shows the thermally assisted hopping conduction,
we anticipate that the inductance lowers down and the peak
is found. Second, as for frequency dependence, we dis-
tinguish between Drude-type inductance in single-band or
gapped multiband systems and non-Drude-type inductance
in gapless multiband systems [see Fig. 1(b)]. Drude-type
inductance remains independent of frequency, while non-
Drude-type inductance exhibits a sharp negative dip near
ω ¼ 0, as depicted in the lower panel of Fig. 1(a).
Method.—To investigate the phenomenon of inductance

in strongly correlated magnets, we employ the slave-
fermion method [22–25]. The behavior of strongly corre-
lated magnets can be effectively captured by the famous t-J
model, defined by the Hamiltonian

H¼−
X
hiji

J

�
Si ·Sj−

1

4
ninj

�
−
X
hiji

tijðc†iαcjαþH:c:Þ: ð3Þ

Within the slave-fermion method, the electron operator
can be expressed as c†iα ¼ f†iαbi þ ϵαβfiβd

†
i , subject to the

constraint
P

α f
†
iαfiα þ b†i bi þ d†i di ¼ 1. Here, b†i (holon)

represents the vacancy, f†iα (spinon) denotes the single-
occupancy with spin α, and d†i (doublon) corresponds to the
double occupancy. Since the electron is a fermion, either
fiα or bi=di must be fermionic, while the other is bosonic.
Specifically, when bi=di exhibits fermionic (bosonic)
behavior, it is referred to as the slave-fermion (slave-boson)
theory.
Because of strong correlation effects, the presence of

double occupancy is prohibited. Therefore, the electron
operators can be expressed as c†iα ¼ f†iαbi, subject to the
constraint

P
α f

†
iαfiα þ b†i bi ¼ 1. Introducing the operators

χ̂ij ¼
P

α fiαfjα and Δ̂ij ¼
P

αβ ϵαβfiαfjβ, we find that

Si · Sj ¼ 1
2
½χ̂†ijχ̂ij − 2SðSþ 1Þ� for ferromagnets, while

Si · Sj ¼ 1
2
ð2S2 − Δ̂†

ijΔ̂ijÞ for antiferromagnets. χ̂ij repre-

sents coherent spinon propagation and Δ̂ij represents
spinon singlet coupling.
By employing slave-fermion mean-field theory (SFMFT)

and introducing the order parameters χij ¼ hχ̂iji in ferro-
magnets, we arrive at the following Hamiltonian:

H ¼ −J̃
X
hiji

ðχijχ̂†ij þ χ�ijχ̂ijÞ þ
X
hiji

ðtijχijb†i bj þ H:c:Þ

þ
X
i

λi

�X
α

f†iαfiα þ b†i bi − 1

�
: ð4Þ

Here J̃ ¼ J=2. It should be noted that the last line represents
the Lagrange multiplier λi associated with the constraint, and
the fermionic and bosonic components are treated separately
in this formulation.
Using a U(1) gauge theory, the physical conductivity is

determined by σ−1 ¼ σ−1f þ σ−1b , where σf;b represent the
conductivity of spinons and holons, respectively. This is
known as the Ioffe-Larkin composition rule [19]. The rule
arises from the fact that the spinons flow against holons
because of the strong coupling of holons and spinons by the
gauge field. We assume that the system is appreciably away
from half-filling, so the holon conductivity σb follows a
Drude-type behavior, σb ¼ σ0=ð1 − iωτbÞ, which is rela-
tively temperature insensitive and much larger than that
of spinons. Here, the transport lifetime τb is typically
∼1 THz−1 ¼ 1 ps, and the inductance from the holons can
be also neglected. Therefore, the remaining part of the
Hamiltonian describes the Schwinger-boson theory for the
spinons.
Spinons exhibit conductivity at half-filling only in ferro-

magnetic systems (J > 0) since χ ¼ χij ¼ 0 in antiferromag-
netic systems (J < 0). Thus, we consider the ferromagnetic
model on spin chains, honeycomb, and kagome lattices, and
determine the order parameters self-consistently at temper-
atures, as shown in the upper panels of Fig. 2. Subsequently,
we compute the current-current correlation functionΠðq;τÞ¼
−hTτJðq;τÞJð−qÞi and obtain ReσðωÞ ¼ −ImΠðωÞ=ω by
analytic continuation iωn → ωþ iη. We mostly set q ¼ 0 as
the external electric field is constant in spacewhile oscillating
in time. The imaginary conductivity is evaluated using the
Kramers-Kronig relation, ImσðωÞ¼−ð1=πÞR dω0½Reσðω0Þ=
ðω0−ωÞ�. The inductivity is then calculated as L ¼
−ImρðωÞ=ω, where ρðωÞ ¼ 1=σðωÞ. The inductance can
be obtained by L ¼ Ll=A where l is the length and A is the
area of the system. We set J̃ ¼ 1, and present energies and
frequencies in units of J̃. The frequency range is ω∈ ½−3; 3�
(up to ∼1 GHz), and the spinon lifetime parameter is η ≈ dk
where dk is the k-mesh size. We suppose that the system
is a cube with 100 nm, so the unit of L is ∼0.1 μH. We will
discuss how the units are determined later. Further computa-
tional details can be found in the Supplemental Material
(SM) [26].

(a) (b)

FIG. 1. Our main findings of emergent inductance in strongly
correlated magnets at high temperatures. (a) The schematics of
inductance in temperatures (upper panel) and in frequencies
(lower panel). (b) The classification of inductance: Drude and
non-Drude types.
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The inductance peak at high T.—In the upper panels of
Fig. 2, the order parameters χ and λ are plotted in
temperatures. The phase transition to the finite χ occurs
at Tχ ≈ 0.77 for the 1D spin chain, Tχ ≈ 1.45 for the 2D
honeycomb lattice, and Tχ ≈ 1.43 for the 2D kagome
lattice. The inductance L can only be determined below
Tχ by SFMFT, since χ is finite only for this regime. This
phase transition is an artifact of the mean-field theory, and
describes the crossover from the coherent propagation of
the spinons to their thermal hopping conduction. This
limitation arises because the model introduces artificial
behavior where χ approaches zero at high temperatures and
fails to capture the short-range spin correlations which
persist at finite values at any finite temperatures [25]. It is
also noted that the finite energy gap Eg of the lowest spinon
dispersion is similar to or smaller than temperatures below
Tχ (see SM).
In the lower panels of Fig. 2, the increased inductance

near Tχ within the frequency range ω∈ ½−3; 3� is shown.
The inductance reaches its highest value L ¼ 103–105 near
Tχ for every case. Despite the anticipated exaggeration of
values from the SFMFT, the incremental (or increasing)
tendency of inductance remains true near Tχ. It is important
to note that Tχ > TC (the Curie-Weiss temperature)
considering the presence of short-range spin correlation
near Tχ.
Nevertheless, beyond Tχ where SFMFT fails, we antici-

pate that the inductance decreases with increasing temper-
atures as the thermally activated hopping motion increases
the conductivity. At higher temperatures where lattice
vibrations are significant, the spinon transfer could be
primarily governed by incoherent thermal excitations.
These excitations come from the electron-phonon coupling
and the consequent polaron effect which is not included in
the present model [27,28]. It is argued that the conductivity

is at the minimum at the crossover from the coherent
propagation to the hopping conduction associated by the
phonon. Therefore, the positive peak of the inductance is
expected near Tχ.
The inductance in frequencies.—The Drude-type induct-

ance can be briefly reviewed as follows [29]. In a normal
metal subjected to an ac electric field EðωÞ, the Drude
conductivity is given by σ ¼ σ0=ð1 − iωτÞ, where
σ0 ¼ ne2τ=me. Here, n represents the number density, e
is the charge of the carriers, τ is the relaxation time, and me
is the mass of the carriers. Consequently, the resistivity is
given by ρ ¼ ð1 − iωτÞ=σ0, and the inductance is given by
L ¼ τl=σ0A ¼ mel=ne2A. Importantly, the inductance L
remains frequency independent. In the present case, the
thermally activated spinons across the gap contribute to the
Drude-like transport due to Eg ≲ T.
In the upper panels of Fig. 3, we show the energy band

structures near Tχ for the spin chain, honeycomb lattice,
and kagome lattice. The 1D spin chain exhibits a single-
band structure. In contrast, the 2D honeycomb and kagome
lattices are multiband systems with band crossing points,
where the interband contribution to the conductivity is also
finite. In the honeycomb lattice, the band crossing occurs at
the K points. For the kagome lattice, band crossings occur
at both the Γ and K points.
In the lower panels of Fig. 3, we present the numerically

computed inductance L near Tχ for the spin chain,
honeycomb lattice, and kagome lattice. Notably, the
inductance exhibits frequency independence only for the
spin chain, following a Drude-type behavior. However, for
the honeycomb and kagome lattices, the inductance dis-
plays a sharp negative dip structure near ω ¼ 0. The
characteristics of this sharp dip, including its depth and
width, are closely connected to the lifetime parameter η of
the spinons. This indicates that the resonance structure
is rooted in the transport phenomena of these systems.

FIG. 2. The order parameters (upper panel) and log-scale
inductance (lower panel) in temperatures from the self-consistent
SFMFT with J̃ ¼ 1 on (a) 1D spin chain, (b) 2D honeycomb
lattice, and (c) 2D kagome lattice. T is in units of J̃, and L is in
units of ∼0.1 μH for the 100 nm cubic sample. The blue lines are
the coherent spinon propagation χ, the orange lines are the
Lagrange multiplier λ, the black lines are the maximum of
inductance L in ω∈ ½−3; 3�, and the dotted lines denote Tχ .

FIG. 3. The energy band (upper panel) and inductance in
frequencies (lower panel) near Tχ, for (a) the 1D spin chain,
(b) 2D honeycomb lattice, and (c) 2D kagome lattice. EðkÞ and ω
are in units of J̃, and L has the same unit as above. The 1D spin
chain is a single-band system, exhibiting Drude-type inductance.
The honeycomb and kagome lattices are gapless multiband
systems, exhibiting a sharp negative dip structure near ω ¼ 0.
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The energy gap Eg ≲ T does not appear in the frequency
dependence of the inductance because of the thermally
activated bosons. Further details can be found in the SM.
The distinction between the spin chain and other systems

arises from the interband transitions at q ¼ 0 in spinon
transport. This can be demonstrated through analytic
calculations of inductance in two scenarios.
First, consider the 1D spin chain. The current-current

correlation function is given by

Π1ðq;ωÞ ¼ 2ðJ̃χÞ2
Z

dk
2π

sin2k
−Δωk;qΔn

ðωþ iηÞ2 − Δω2
k;q

; ð5Þ

where Δωk;q ¼ ωk−q=2 − ωkþq=2, Δn ¼ nðωk−q=2Þ−
nðωkþq=2Þ, and ωk ¼ λ − J̃jχj cos k represents the energy.
Here, n denotes the Bose-Einstein distribution. Notably, the
intraband transition described by Δωk;q dominates because
of a single band in the system. By taking the limits η → 0

and q → 0 successively, the total conductivity becomes

σ1ðωÞ ¼ −2ðJ̃χÞ2
Z

dk
2π

sin2k

�
πδðωÞ þ i

ω

�
n0ðωkÞ: ð6Þ

The integration in k yields σ1ðq;ωÞ ¼ AðπδðωÞ þ i=ωÞ
with A > 0, rendering the inductance L ¼ 1=A frequency
independent.
Second, consider the 2D honeycomb lattice. The current-

current correlation function at q ¼ 0 is given by

Π2ð0;ωÞ ¼ 4ðJ̃χÞ2
Z

d2k
ð2πÞ2

Δn
ωk

gðkÞ2
ðωþ iηÞ2 − ð2ωkÞ2

; ð7Þ

where k¼ðk1;k2Þ, gðkÞ¼ðJ̃χÞ½1þcosk1þcosðk1−k2Þ�,
ω2
k ¼ ðJ̃χÞ2½3þ 2 cos k1 þ 2 cos k2 þ 2 cosðk1 − k2Þ�, and

Δn ¼ nðλ − ωkÞ − nðλþ ωkÞ. Remarkably, the energy
dispersion in the honeycomb lattice is λ� ωk, so 2ωk ¼
ðλþ ωkÞ − ðλ − ωkÞ corresponds to interband transitions.
Upon performing some algebraic manipulations, we
arrive at

σ2ðωÞ ¼ 2ðJ̃χÞ2
Z
k

gðkÞ2Δn
ω3
k

iðωþ iηÞ
ðωþ iηÞ2 − ð2ωkÞ2

; ð8Þ

where
R
k ¼

R
d2k=ð2πÞ2. The integrand exhibits resonance

behavior observed in numerical computations. If a band
crossing point exists such that ωk ¼ 0, in the vicinity of
ω ¼ 0, the denominator of the integrand approaches
zero, leading to a significant increase in conductivity.
Consequently, the resistivity decreases near ω ¼ 0, result-
ing in a sharp negative dip structure in the corresponding
inductance.
Three additional aspects are worth noting. First, the

result obtained for the 1D spin chain can be generalized to

higher dimensions with a single band. Consequently, we
anticipate that higher-dimensional single-band systems
would exhibit Drude-type inductance. We briefly address
that the 2D square lattice hosts Drude-type inductance in the
SM. Second, in a multiband system, the sharp dip structure
near ω ¼ 0 may not exist when there is a gap in the energy
bands, considering that the denominator in Eq. (8)would not
approach zero for such a case. We illustrate it further with a
1D spin ladder model in the SM. Lastly, in the presence of
impurities or disorder, even single-band systems or gapped
multiband systems demonstrate non-Drude inductance. This
arises from the contribution of intraband transitions to the
transport phenomenon. We utilize the Mattis-Bardeen
scheme [30] in the spin chain, and provide the details in
the SM.
Discussion.—In summary, we examine the emergent

inductance in strongly correlated magnets with fractional-
ized spins. At temperatures above the ordering temperature,
the dispersion of spinons decreases, leading to a significant
increase in inductance. The type of inductance, whether
Drude or non-Drude, depends on the system’s character-
istics such as the number of bands and the presence of band
gaps. In non-Drude cases, a sharp dip structure near ω ¼ 0
is observed, and its width is determined by the spinon’s
relaxation rate, which is typically ∼Jα with α being the
Gilbert damping constant, and is much smaller than the
usual transport relaxation rate τ−1b .
Here, we discuss the units of physical quantities and the

range of the estimated inductance. We assume the unit of
exchange interaction J is the order of ∼1 meV and the unit
of lattice constant a ¼ 1 Å. Thus, considering that
ℏ ¼ e ¼ 1, the unit of kBT is 11.6 K, that of frequency
ω is 242 MHz, that of the spinon lifetime η−1 is 4.13 ns, that
of resistivity ρ is 258 μΩ cm, and that of inductivity L is
1.07 pH cm. Accordingly, in a cubic system with 100 nm
edges, the unit of inductance is approximated ∼0.1 μH.
Near Tχ, L ∼ 102 − 104 μH, which can be compared to
previous experimental findings showing L ∼ 1–10 μH [16].
Although the SFMFT exaggerates the computed induct-
ance, we predict that the positive inductance peak at high
temperatures is experimentally observable.
Furthermore, it is imperative to consider the impact of

electron-phonon interactions, particularly with acoustic
phonons, which pervade condensed matters. The electron-
phonon interaction plays a significant role in diminishing
the emergent inductance. As previously noted, the emer-
gent inductance experiences an increase when spinons
exhibit reduced conductivity, resulting in a temperature
peak during the transition from coherent to thermal hop-
ping of spinons. We underscore that the transport mecha-
nism at high temperatures is dictated by electron-phonon
coupling. Thus, the inclusion of electron-phonon coupling
facilitates thermal hopping and thereby reduces the emer-
gent inductance.
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Next, we discuss the negative emergent inductance in our
system. In a conventional system, the impedance is
composed of three components, the inductance L, the
capacitance C, and the resistance R. Then, L should not
be negative because of the system’s stability. However, the
emergent inductance L is the imaginary part of impedance
divided by frequency, which is attributed to conventional L
and C both. Hence, the sharp dip of L near ω ¼ 0 is
attributed to C. When the dip gets sharper, even the
negative L emerges. We find the negative L near ω ¼ 0
in our computations on 2D honeycomb lattice at low
temperatures (see Fig. S8 in the SM).
We address two necessary conditions for emergent

inductance by comparing previous theoretical studies with
ours [14,31]. First, the coupling of conduction electron spins
to the spin fluctuation fields is required because it gives the
spin Berry connection and EEMF. Second, the current-
induced spin distortion and relevant energy increase are
necessary since the EEMF in Eqs. (1) and (2) is composed of
the derivative of spin directions by spacetime.
It is more important to distinguish our Letter from theirs.

Both of these studies focus on spiral magnets with weakly
correlated electrons, where the EEMF arises from the spin
modulation of spiral magnetic order. This stands in stark
contrast to our Letter, where we explore spin liquids
characterized by ferromagnetic interactions alone. The
EEMF in our Letter originates from spin fluctuations within
the spin-correlated ground state, without long-range order-
ing. Here, electrons undergo fractionalization into spinless
chargons and neutral spinons due to strong electronic
correlations, and the emergent inductance is governed by
spinons. In this context, our Letter introduces a novel
mechanism for emergent inductance within a spin liquid.
Lastly, we suggest the candidate materials for emergent

inductance in addition to Gd3Ru4Al12 and YMn6Sn6 which
we already mentioned. The first candidate is the thin film of
La2−xCexCuO4. Unlike usual high-Tc cuprates, this system
exhibits a ferromagnetic order at higher doping beyond the
superconducting dome [32]. Since the system is well
described by the t-J model and has a 2D square lattice
structure, we anticipate the Drude-type emergent induct-
ance. Other candidates are Cr-based (CrI3, CrBr3, CrSrTe3,
CrGeTe3) and Fe-based [AFe2ðPO4Þ2; A ¼ Ba, Cs, K, La]
materials, which are correlated ferromagnets and well
described by the spinonic model [33]. Since these materials
have a 2D honeycomb lattice structure, we expect the non-
Drude-type emergent inductance. We believe that our
results provide useful intuitions into the transport in a
strongly correlated system complementary to Ref. [31] and
reveal the practical prospects for utilizing emergent
inductance.
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