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In his seminal work on turbulence, Kolmogorov made use of the stationary hypothesis to determine the
power density spectrum of the velocity field in turbulent flows. However, to our knowledge, the constraints
that stationary processes impose on the fluctuations of the energy flux have never been used in the context
of turbulence. Here, we recall that the power density spectra of the fluctuations of the injected power, the
dissipated power, and the energy flux have to converge to a common value at vanishing frequency. Hence,
we show that the intermittent Gledzer-Ohkitani-Yamada (GOY) shell model fulfills these constraints. We
argue that they can be related to intermittency. Indeed, we find that the constraint on the fluctuations of the
energy flux implies a relation between the scaling exponents that characterize intermittency, which is
verified by the GOY shell model and in agreement with the She-Leveque formula. It also fixes the
intermittency parameter of the log-normal model at a realistic value. The relevance of these results for real
turbulence is drawn in the concluding remarks.
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The complex structure and the statistics of turbulent
flows still resist to a full understanding. The large number
of spatial scales between the injection and the dissipation
(efficient only at very small scale) also implies many time
scales. This makes full numerical studies of temporal
fluctuations in the limit of very turbulent flow (at high
Reynolds number) very costly. The intermittency of the
velocity increments with their highly non-Gaussian fluc-
tuations has been widely discussed, although the mecha-
nisms implying such complexity remain unclear in
turbulent flows [1]. Kolmogorov (K41 theory) used the
ingredients of stationarity, locality of the nonlinear inter-
actions, and existence of a large inertial range of scales
where the energy injected at large scale is transferred
lossless down to the small dissipative scales. Stationarity
imposes that the rate of energy transfer, called the energy
flux, is equal to the injected power on average. Moreover,
for homogeneous isotropic turbulence, the velocity incre-
ments on size l, δluðrÞ ¼ ½uðrþ lÞ − uðrÞ�, is assumed to
depend only on the mean dissipated power per unit mass
hDi and on l in the inertial range. All together this implies
that the third moment of the velocity increment, hδluðrÞ3i,
is proportional to hDil. Because it does not take into
account the fluctuations in the process of energy transfer,
K41 theory fails to correctly predict the scaling exponents
ζðpÞ defined by hδluðrÞpi ∝ lζðpÞ for p ≠ 3. Based on the
same stationarity hypothesis, many refinements of the
theory tried to obtain these exponents [1–7]. They take
into account the fluctuations of the dissipation rate that

depend on the complex structure of the flow in order to get
the exponents ζðpÞ in agreement with experiments [8,9].
However, the underlying requirement that imposes such
complexity remains hidden.
She and Leveque proposed one of these models. They

predict [7]

ζðpÞ ¼ γpþ ð1 − 3γÞ ð1 − βp=3Þ
1 − β

: ð1Þ

This is in very good agreement with the measurements of
turbulent flows for γ ¼ 1=8 and β ¼ 0.58 [7]. We are going
to use it as a reference. Wewill also consider the log-normal
model that gives another function for the scaling exponents
[2,3]

ζðpÞ ¼ p=3þ ðμ=18Þð3p − p2Þ; ð2Þ
which involves a single free intermittency parameter μ.
It is remarkable that intermittency is observed in models

of turbulent flows known as shell models in which
geometrical structures of the flow are discarded and the
Kolmogorov cascade is described by a set of ordinary
differential equations for velocities unðtÞ related to the
energy content of scales kn ∝ 2n [10,11]. The scaling
exponents ζðpÞ defined above in real space and defined
here by

hjunjpi ∼ k−ζðpÞn ð3Þ
are well described by (1) [12].
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This quantitative agreement for scaling exponents mea-
sured in turbulent flows and obtained in shell models
motivated us to find a general constraint on turbulent
cascades of energy, independent of the flow geometry,
that could explain intermittency corrections to K41 theory.
To wit, we use an additional constraint imposed by
stationarity beyond the equality of the averages of injected
power, energy flux, and dissipation. This additional con-
straint is related to the power density spectra (PDS) of
injected and dissipated power, that should be equal in the
limit of vanishing frequency. We show that the intermittent
Gledzer-Ohkitani-Yamada (GOY) shell model indeed sat-
isfies this constraint on power. Furthermore, the same
constraint is also fulfilled by the energy flux in this case.
This compels the product of the variance of the energy flux
with its correlation time to be constant within the inertial
range. We then discuss how this constraint imposes a
relation between two scaling exponents ζðpÞ for different
p’s. We check that our simulation of the GOY shell model
as well as the She and Leveque (SL) prediction [7,12]
satisfies this relation. We also demonstrate that this relation
fixes the intermittent parameter of the log-normal model to
its expected value [2,3]. We finally discuss the relevance of
these results for real 3D turbulence.
Turbulent flows like all dissipative systems in a sta-

tionary state obeys the energy balance

dE
dt

¼ I −D; ð4Þ

where E is the total internal energy, I is the injected power,
and D the dissipated power [13]. It has been shown that the
injected power that drives a turbulent flow fluctuates in
time [14–19]. For flows driven by a constant force, the
work done by the force strongly depends on the angle
between the force and the velocity as well as on the
magnitude of the velocity that both fluctuate in time. For
flows driven by the motion of a solid boundary at constant
velocity, the force applied by the flow on the boundary
depends on the velocity gradients that fluctuate in time,
therefore the injected power also fluctuates in time. In some
flow geometry, these fluctuations can be fairly large and
lead to IðtÞ < 0 for a while, i.e., events for which the flow
gives back energy to the driving mechanism. Similar
fluctuations of the injected power have been also reported
for others dissipative systems driven out of equilibrium
[13,20–23].
Obviously, properties of stationary processes impose

hIi ¼ hDi where h·i stands for the ensemble average. One
can go further by taking the Fourier transform of Eq. (4)
and multiplying it by

�
ÎðωÞ þ D̂ðωÞ�� where X̂ is the

Fourier transform of the centered variable ΔX ¼ X − hXi
and � stands for complex conjugate. Then one takes the
limit ω → 0 on the real part and obtains a second order
stationary relation

lim
ω→0

�jÎðωÞj2� ¼ lim
ω→0

�jD̂ðωÞj2�: ð5Þ

Using the Wiener-Kinchine theorem, one can write (5) asZ
∞

0

hΔIðtÞΔIðtþ τÞidτ ¼
Z

∞

0

hΔDðtÞΔDðtþ τÞidτ: ð6Þ

An alternative demonstration of this equality was first pro-
posed by Farago in [24]. In order to perform scaling
arguments, it is convenient to introduce the correlation time
of the variable X defined as τX ¼ ½1=σðXÞ2� Rþ∞

0 hΔXðtÞ×
ΔXðtþ τÞidτ. With this definition, one can rewrite
Eq. (6) as

σðIÞ2τI ¼ σðDÞ2τD: ð7Þ

The pertinence of Eq. (7) has been tested on various
dissipative systems in [20,22]. Equations (5)–(7) relate the
low frequency fluctuations of injected and dissipated power
that are usually not considered in turbulent flows. More-
over, in the case of turbulent shell models, it is possible to
extend the balance (4) to the energy flux, as we will show
hereafter. In addition, such simplified models are conven-
ient to study the asymptotic behaviors at vanishing fre-
quency because they are easy to integrate numerically over
a very long time. We will focus on the GOY shell model in
the following [10].
The GOY shell model is built to exhibit a highly

intermittent behavior. In our computations, we discretize
the wave number space in N ¼ 20 shells of size increasing
exponentially. The complex velocity un ¼ un;r þ j un;i in
the nth shell is described by the set of equations [1,10–12]:

dun
dt

¼ F ðun−2; un−1; unþ1; unþ2Þ þ f4 · δn;4 − νk2nun; ð8Þ

where kn ¼ 2n=16 is the wave number corresponding to the
shell n (1 ≤ n ≤ N), ν is the kinematic viscosity
(ν ¼ 7.62 × 10−7 in order to keep few shells in the
dissipative range), and f4 represents a constant force acting
on the 4th shell only. The large forcing scale is thus L ¼
k−14 and has a characteristic velocity U ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

f4=k4
p

. One
chooses the nonlinear terms in order to conserve the
volume in phase space, energy, and helicity in the inviscid
limit, i.e., F ðun−2; un−1; unþ1; unþ2Þ ¼ jknðunþ1unþ2 −
un−1unþ1=4 − un−1un−2=8Þ� [10].
The injected power I ¼ f4ðu4;r þ u4;iÞ and the dissi-

pated power D ¼ P
20
n¼1 νknju2j show very different tem-

poral traces, the latter being very intermittent as shown in
Fig. 1. Nevertheless, it is clear in Fig. 2 that the PDS at
vanishing frequency of injected and dissipated power
converge to the same value as expected from Eq. (5).
Moreover, for the GOY shell model, another energy

balance can be written for the truncated energy EM ¼P
M
n¼1 ju2nj=2 with 4 < M < 20. One gets
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dEM

dt
¼ I − Π0

K; ð9Þ

where Π0
K ¼ ΠK þP

M
n¼0 νknju2j with

ΠK ¼ jKðuMþ2uMþ1uM þ uMþ1uMuM−1=4Þ� þ cc ð10Þ

is the energy flux through the shell M and K ¼ 2M=16. In
the inertial range, i.e., for K ≪ ðhIi=ν3Þ1=4, the termP

M
n¼1 νknju2j due to dissipation, is negligible in the

expression of Π0
K . Because the balance (9) is formally

equivalent to Eq. (4), one deduces that in the inertial range

lim
ω→0

�jÎðωÞj2� ¼ lim
ω→0

�jΠ̂KðωÞj2
�
; ð11Þ

τIσðIÞ2 ¼ τΠK
σðΠKÞ2: ð12Þ

This is indeed the case for the GOY shell model as shown in
Fig. 3 where we plot the PDS of jΠ̂KðωÞj2 for each K ¼
2M=16 with 2 ≤ M ≤ 18. The inset shows a large inertial

range of scales where the limit at vanishing frequency is
constant. It falls down at the largest wave numbers K
because the viscous damping must be taken into account in
the dissipative range.
Finally, we can compute separately the variance of ΠK as

a function of K and deduce the scaling of the correlation
time τΠK

¼ ½1=σðΠKÞ2�limω→0½jcΠKðωÞj2�.
Figure 4 shows that σðΠKÞ2 ∝ hjuMj6iK2 in agreement

with a simple dimensional estimate. We also get hjuMj6i ∝
K−ζð6Þ with ζð6Þ ¼ 1.73� 0.01 from a fit between the 5th
shell and the 16th shell, in perfect agreement with the SL
model [for which ζð6Þ ¼ 1.737]. All together,

σðΠKÞ2 ∝ hjuMj6iK2 ∝
U6

L2
ðKLÞ−ζð6Þþ2 ∝ K0.27: ð13Þ

-0.1

0

0.1

0.2

0.3

0 500 1000 1500 2000 2500 3000
0

50

100

FIG. 1. Temporal trace of the injected (top) and dissipated
(bottom) power in the GOY shell model with N ¼ 20, ν ¼
7.62 × 10−7 and f4 ¼ 0.071.

10-2 100 102 104 106

Frequency (Hz)

10-40

10-20

100

1020

I
D

FIG. 2. Power density spectra (PDS) of the injected (blue) and
dissipated (red) power in the GOY shell model with N ¼ 20,
ν ¼ 7.62 × 10−7, and f4 ¼ 0.071.
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FIG. 3. Power density spectra (PDS) of the rate of energy
transfer ΠK for the all shell layers. Each color represents the PDS
of the energy flux at a given shell, the high frequency part
increasing with the wave number K. The black curve corresponds
to the PDS of the injected power. The blue asterisk in the inset
shows the smallest frequency limits of this PDS, jΠ̂K j2ðω → 0Þ.

FIG. 4. Comparison between the scaling of hjuMj6i and
σðΠKÞ2=K2. The black dashed line is the prediction of the SL
model and the black dot-dashed line (almost mingled) is obtained
from a fit between the 5th and 16th shells of the GOY shell model.
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Note that this scaling law for the variance of the fluctua-
tions of the energy flux is in reasonable agreement with
direct numerical simulations of hydrodynamic turbulence
[25]. Since the left hand side of Eq. (12) is independent of
K, it implies τΠK

∝ K−0.27.
This does not correspond to the characteristic turnover

time at each scale that is of order τM ∼ hjuMj−1iK−1 ∝
ðL=UÞðKLÞ−ζð−1Þ−1. Indeed, that gives τM ∝ K−0.6 with the
SL model. Nevertheless, there is no reason that the
correlation time of the coarse-grained quantities involved
in Eq. (9) is reduced to the turnover time of the smallest
scale implied in the coarse graining process.
To tackle the scaling of τΠK

, one assumes that there exists
a single scaling in K for all quantities coarse grained up to
the wave number K, especially those involved in (9). In
order to find this scaling law, we focus on the coarse-
grained velocity UK ¼ P

M
i¼1 ui. By definition, one has

τUK
¼

R
∞
0 hUKðtÞ ·UKðtþ τÞidτ

σðUKÞ2
; ð14Þ

where τUK
, the correlation time of UK , shares the same

scaling in K that τΠK
by assumption. The computation of

τUK
can be pushed forward:

τUK
∼
P

M
n¼1

R∞
0 hunðtÞ · unðtþ τÞidτP

M
n¼1hjunj2i

; ð15Þ

τUK
∼
P

M
n¼1 τnσðunÞ2P
M
n¼1hjunj2i

; ð16Þ

where we take into account the short range of the
interaction to neglect the cross terms in Eq. (15) (assuming
a random phase between the different complex velocity
components un) and where dimensional analysis imposes
τn ∼ hjunj−1ik−1n .
Focusing on the inertial range where the scaling laws

apply and taking the continuous limit for the wave vectors,
τUK

can be approximated by

τUK
∝
�

1 − ζð2Þ
−ζð−1Þ − ζð2Þ

�
K−ζð−1Þ−ζð2Þ − 1

K1−ζð2Þ − 1
: ð17Þ

The limit at large K depends on the value of ζð2Þ and
ζð−1Þ. From our simulation of the GOY shell model,
one gets ζð2Þ ¼ 0.72� 0.02 and ζð−1Þ ¼ −0.45� 0.02
between the 5th shell and the 16th shell, in good agreement
with the prediction of She-Leveque [ζð2Þ ¼ 0.703 and
ζð−1Þ ¼ −0.422]. Hence, in the limit K ≫ 1 and with our
assumption of a similar scaling for all the coarse-grained
variables, one deduces from Eq. (17) that

τUK
∝ τΠK

∝
L
U
ðKLÞζð2Þ−1; ð18Þ

i.e., τΠK
∝ K−0.28 in good agreement with the scaling of

σðΠKÞ2. Note that this final scaling law does not depend on
the precise definition of τn. For instance, using τn ¼
hjunji−1k−1n [replacing ζð−1Þ by −ζð1Þ with ζð1Þ ¼ 0.37]
would have led to the same scaling for τΠK

.
Interestingly, using Eqs. (13) and (18) and taking into

account the constraint (12), imposes the relation

ζð6Þ − ζð2Þ − 1 ¼ 0: ð19Þ

The simulation of the GOY shell model gave ζð2Þ ¼
0.72� 0.02, ζð6Þ ¼ 1.73� 0.02. Hence, relation (19)
holds within a percent. Notice that the K41 theory gives
ζð2Þ ¼ 2=3 and ζð6Þ ¼ 2, which is less satisfactory [26].
In the case of the log-normal model, Eq. (19) fixes the

intermittency parameter μ to 3=10which is compatible with
the values extracted from numerical and experimental
data [27,28].
To sum up, we have shown that some deviations from the

K41 prediction ζðpÞ ¼ p=3 are required to satisfy the
constraints on the power fluctuations imposed by statio-
narity in the GOY shell model. These required deviations
are also a trace of the model intermittency. The intermittent
scaling exponents indeed satisfy Eq. (19) imposed by the
second order stationary balance (12).
We want to conclude this discussion with the second

order stationary relation between injected and dissipated
power (5)–(7). Although the variance of the injected power
and the one of the dissipated power strongly differ in the
GOY shell model (see the temporal traces in Fig. 1 and the
PDS Fig. 2), the relation (7) holds. Since the left hand side
of this relation is independent of the Reynolds number, so
does the right hand side. We can expect that the variance
and the correlation time of the dissipation depend on the
Reynolds number, but their product must not. A systematic
analysis of the variance and correlation time of D in the
GOY shell model for different viscosities would be
interesting but we postpone it to further studies.
This previous remark emphasizes an important differ-

ence between shell models and turbulent flows. In the later
case, the dissipated power is a global quantity averaged
over the entire flow volume. Its temporal trace is much less
intermittent than in Fig. 1 (bottom) because the average
over volume smears out incoherent small scale dissipative
bursts. Direct numerical simulations (DNS) indeed show
that the fluctuations of the dissipation almost follow those
of the injected power [15,18]. Both are only affected by
structures existing on an integral time scale. Actually, (7)
holds for real 3D turbulence because both σðIÞ ∼ σðDÞ
and τI ∼ τD.
Nevertheless, the reasoning presented here on the GOY

shell model, might also apply to a coarse-grained fluid
element that we follow in a Lagrangian way in 3D turbulent
flow. Indeed, in this case, the energy balance contains only
two terms, an injection one implying the large scale forces,
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including the pressure work, applied on the coarse-grained
fluid particles, and a dissipative term containing the viscous
dissipation and the energy flux through the smaller scales
than the one of coarse graining. The same dimensional
arguments can be applied to this last term. Using some
ergodic hypothesis, this may explain why the relation
between scaling exponents established previously is com-
patible with the one measured in Eulerian turbulent flows
[8,9,25]. We hope this will motivate further direct numeri-
cal simulations to evidence constraints on the fluctua-
tions of the various terms involved in the local energy
budget [29].
Another interesting question is related to the inverse

cascade of two-dimensional turbulence. Qualitatively, we
expect from Eq. (12) that the fluctuations of the energy flux
continuously decrease along the inverse cascade because
the correlation time increases when K → 0. This is indeed
displayed by direct numerical simulations [30] where it is
observed that the large-scale dissipation fluctuates much
less than the injected power. Vanishing fluctuations of the
energy flux in the limit K → 0 can be an argument in favor
of the absence of intermittency for the inverse cascade.
Obtaining quantitative results is more difficult for reasons
similar to the ones mentioned above for three-dimensional
turbulence. Using the GOY shell model to study that
problem is not possible because it does not display an
inverse cascade even when it is modified in order to
conserve energy and enstrophy [31]. Other types of shell
models or direct simulations of two-dimensional turbulence
can be used to determine the scaling laws for the variance of
the energy flux and for the correlation time.
The present work can be pursued in several directions

besides the study of intermittency in 2D and 3D turbulence.
It will be of interest to test different shell models including
the Sabra model [32], models for passive scalar advection
[33] or magnetohydrodynamic turbulence [34]. We are also
planning to study different domains in which intermittency
is observed such as wave turbulence [35], electrical con-
duction in granular media [36], or fragmentation models
[37]. We also hope that our work will trigger further studies
of intermittency using the method that we propose.
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