
Localization of Chiral Edge States by the Non-Hermitian Skin Effect

Gui-Geng Liu (刘癸庚) ,1,* Subhaskar Mandal,1,* Peiheng Zhou,2,* Xiang Xi,3,* Rimi Banerjee,1

Yuan-Hang Hu,2 Minggui Wei,1 Maoren Wang,2 Qiang Wang,4 Zhen Gao ,5 Hongsheng Chen,6

Yihao Yang,6,† Yidong Chong,1,7,‡ and Baile Zhang 1,7,§

1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
21 Nanyang Link, Singapore 637371, Singapore

2National Engineering Research Center of Electromagnetic Radiation Control Materials,
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China,

Chengdu 610054, China
3School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China

4School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University,
Nanjing, Jiangsu 210093, China

5Department of Electrical and Electronic Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

6Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation,
ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering,

Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, ZJU-UIUC Institute, Zhejiang University,
Hangzhou 310027, China

7Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798, Singapore

(Received 28 May 2023; revised 9 December 2023; accepted 9 February 2024; published 12 March 2024)

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any
two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels
that produce a quantized Hall conductance; due to their chirality, and the topological protection by the
Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here,
we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a
gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured
loss configuration imparts the edge states’ complex energy spectrum with a feature known as point-gap
winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant
of the bulk (which remains intact) and induces mode localization via the “non-Hermitian skin effect.” The
interplay of the two topological phenomena—the Chern number and point-gap winding—gives rise to a
non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle.
Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have
superior robustness against local defects and disorders.
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The significance of band topology was first discovered
in the context of the quantum Hall effect in the 1980s [1].
In certain two-dimensional (2D) materials with broken
time-reversal symmetry, the Hall conductance is exactly
quantized, which is intimately tied to the fact that the bulk
is insulating and charge transport occurs exclusively via
chiral edge states [2]. The existence of the chiral edge
states is guaranteed by the bulk bands’ nontrivial top-
ology, as characterized by a topological invariant [the
Chern number C [3–5]; see Fig. 1(a)]. It is important for
the quantum Hall effect that the chiral edge states are
immune to backscattering (so long as the bulk is insulat-
ing), and hence do not undergo Anderson localization
despite being one-dimensional (1D) transport channels.
The robustness of chiral edge states against localization
has even been directly observed in classical wave

realizations of quantum Hall systems, based on photonic
[6,7], acoustic [8,9], and mechanical lattices [10].
Theories of band topology have mostly been developed

in the context of quantum Hall phases, and other topo-
logical phases of matter that are all Hermitian (energy-
conserving). In recent years, however, there has been a
great deal of progress in understanding the topology
of non-Hermitian materials [11–16]. Some concepts from
Hermitian band topology, including the Chern number [12],
turn out to be generalizable to the non-Hermitian regime.
Moreover, non-Hermitian systems have been found to
possess unique forms of band topology with no counter-
part in the Hermitian regime. For instance, non-Hermitian
band spectra may exhibit “point gaps,” defined by points
in the complex plane that are encircled by but do not
overlap with any band frequency (energy) [13,15]. (This is
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distinct from a “line gap,” an arbitrary line in the complex
plane separating the bands, which is the more straightfor-
ward generalization of the Hermitian notion of a band
gap.) A point-gapped non-Hermitian Hamiltonian cannot
be continuously deformed to a Hermitian Hamiltonian
without closing the point gap. A point gap can be
associated with an integer winding number, and nonzero
windings are associated with the “non-Hermitian skin
effect” (NHSE) [17–49], whereby an extensive number of
bulk states become localized to a boundary. This phe-
nomenon has been observed in recent experiments based
on classical-wave systems [39–49]. To our knowledge,
the implications of the NHSE for chiral edge states, which
involve the interplay between point-gap topology and
Chern number topology [35–37], have never been studied
in any experiment.
In this Letter, we report on the observation of NHSE-

induced localization of chiral edge states in a gyromagnetic
photonic crystal (PhC). Such PhCs are commonly known
as photonic topological insulators and exhibit photonic
band gaps with nonzero Chern numbers [6]. By intention-
ally introducing losses to the system (thereby making it
non-Hermitian) in a particular spatial pattern, we induce
point gaps in the complex spectrum of the chiral edge
states, with a pair of winding numbers ðνx; νyÞ associated
with the x and y directions respectively [see Fig. 1(b)]. We
show that the point-gap winding topology determines
whether the chiral edge states are localized along a
1D sample edge (when νx ≠ 0 or νy ≠ 0), or at a zero-
dimensional (0D) corner (when both νx ≠ 0 and νy ≠ 0).
The chiral edge states are thus governed by a hybrid
invariant (C; νx, νy) involving both point-gap and Chern
number topology (see Fig. S1 for an illustration of the
hybrid bulk-boundary correspondence [50]).
Our system also behaves differently from other NHSE

realizations that are not based on chiral edge states [38–49].
Most of the theoretical models exhibiting the NHSE, such
as the Hatano-Nelson model [13], are based on discrete
(tight-binding) lattices, and the most common route to
manifesting the NHSE is to introduce asymmetric cou-
plings between discrete lattice sites, which have different
magnitudes in the forward and backward directions

(this determines the direction in which waves are “fun-
neled” [39], and consequently where the skin modes are
localized [16]). Our gyromagnetic PhC is continuous rather
than discrete, and does not require asymmetric couplings,
which have been challenging to implement on many
experimental platforms. Moreover, because the skin effect
in our system is based on chiral edge states, forward and
backward transport is spatially separated (on opposite
edges of a strip), providing the skin effect with superior
robustness against local defects and disorder.
The PhC hosting localized chiral edge modes is depicted

in Fig. 2(a). It consists of a square lattice with three
gyromagnetic rods per unit cell, with each rod surrounded
by microwave-absorbing materials with a relative permit-
tivity of either ε1 ¼ ε01 − iε001 or ε2 ¼ ε02 − iε002, where
ε01 ≈ ε02 and ε001 ≪ ε002 [50]. In the limit ε001 ¼ ε002 ¼ 0 and
without losses in the gyromagnetic rods, the PhC would be

 

FIG. 2. First-principles study of edge-localized chiral edge
states. (a) Unit cell of the PhC. a ¼ 10 mm and d ¼ 3 mm.
(b) Eigenfrequencies for double-PBCs (blue region) and double-
OBCs (rhombic dots). (c) Finite structure with double-OBCs.
(d) Eigenfunctions for states labeled “1” and “2” in (b). (e) Super-
cell with x-PBC=y-OBC. (f),(g) Eigenfrequencies and eigen-
functions for the supercell in (e). The black arrows in (f) denote
the kx increasing directions. The red arrows in (g) indicate the
group velocities of the edge states. (h)–(j) Similar to (e)–(g) but
for y-PBC=x-OBC.

FIG. 1. Chern-type bulk-boundary correspondence and its non-
Hermitian generalization. (a) Chiral edge states. (b) Edge- or
corner-localized chiral edge states. The determination of boun-
dary modes requires a hybrid topological invariant (C; νx, νy).
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Hermitian and all eigenfrequencies would be real. The unit
cell is mirror symmetric along the x direction, but not
along y. We apply a static magnetic field of 0.7 T along the
z axis, breaking time-reversal symmetry in the gyromag-
netic rods [50]. The PhC is placed in a parallel-plate
waveguide, and we focus on the transverse magnetic
modes, which have electric fields polarized along the z axis.
Because of the material losses, the PhC is non-

Hermitian. Its bulk band spectrum, calculated from a single
unit cell under periodic boundary conditions (PBCs) along
both x and y (“double-PBCs”), forms a set of distinct
complex bands each filling a bounded region of the
complex frequency plane, as indicated by the blue areas
in Fig. 2(b). The bands are thus separated by line gaps.
For the second and third gaps, depicted in this plot, the non-
Hermitian generalization of the Chern number is well-
defined [12] and yields C2 ¼ −1 and C3 ¼ 1 [50].
Next, we consider a finite-size sample of the PhC,

bounded by copper claddings along both the x and y
directions, as shown in Fig. 2(c). Because the claddings
act as perfect reflectors at microwave frequencies, this
configuration is equivalent to open boundary conditions
(OBCs) in a tight-binding model (i.e., open truncation of
the lattice) along both x and y (“double-OBCs”). The
calculated complex eigenfrequencies are plotted as dia-
mond markers in Fig. 2(b). We observe that a large set of
eigenfrequencies, corresponding to bulk modes, occupy the
same areas as the bulk band frequencies. However, there
are also eigenfrequencies spanning the bulk line gaps; the
corresponding eigenfunctions are strongly localized along
the sample’s right edge (for gap 2) or left edge (for gap 3),
as shown by the two exemplary states plotted in Fig. 2(d).
The existence of these edge states, which are localized to

part of the sample boundary, arises jointly from point-gap
winding (an intrinsically non-Hermitian topological invari-
ant) and the Chern number (a topological band invariant
generalized from the Hermitian regime). To demonstrate
the former, we study the supercell depicted in Fig. 2(e),
which has PBCs along x and OBCs in the y direction
(“x-PBC=y-OBC”). The calculated eigenfrequencies, plot-
ted in Fig. 2(f), form a spectral loop in each gap. As the
wave number kx sweeps through the 1D Brillouin zone of
the supercell, the eigenfrequencies in the second (third)
gap advance anticlockwise (clockwise), producing a
point-gap winding number of þ1 (−1). This gives rise
to the NHSE [25] and the localization behavior in the
double-OBCs sample discussed in the previous paragraph.
Next, we plot intensity distributions for the supercell

eigenstates in the bulk gap [Fig. 2(g)]. The edge states are
chiral: states of opposite kx lie on opposite (upper or lower)
edges of the supercell, consistent with the bulk non-
Hermitian Chern number of each gap. Moreover, the states
on the upper (lower) arm of each spectral loop, whose
eigenfrequencies have a larger (smaller) imaginary part, lie
on the lower (upper) edge of the supercell. This can be

understood intuitively from the supercell’s configuration:
the states on the lower edge [e.g., states 2 and 4 in Fig. 2(g)]
travel through a lossier region than those on the upper edge
[states 1 and 3 in Fig. 2(g)].
The point-gap winding of the PhC can be quantified

using the winding numbers [25]

να;n ¼
I
BZ

dkα
2πi

d
dkα

lnðfðkαÞ − f0Þ; ð1Þ

where α ¼ x, y indicates the direction along which PBCs
are imposed on a supercell, n is the gap index, f is the
complex eigenfrequency, and f0 is a reference frequency
within the loop. As previously noted, νx;2 ¼ 1 and
νx;3 ¼ −1; the sign difference between the two point-gap
windings is consistent with the edge states being localized
on opposite sides of the double-OBCs sample, as seen in
Fig. 2(d) [50]. Similarly, we can construct a supercell along
x (y-PBC=x-OBC), as depicted in Fig. 2(h). In this case, we
do not observe any spectral loops [Figs. 2(i) and 2(j)], so
νy;2 ¼ 0 and νy;3 ¼ 0 and the NHSE does not occur. This is
consistent with the lack of localization on the upper and
lower edges in the double-OBCs system [Fig. 2(d)] [25].
Next, we fabricate the sample shown in Figs. 3(a)

and 3(b), and characterize it using multiple “pump-probe”
microwave measurements on it. In order to determine the
spatial profiles of the non-Hermitian PhC’s eigenstates,
we utilize the principle that a spatially structured source
preferentially excites eigenstates with matching spatial
intensity profiles. We thus consider a line source (i.e., an
array of dipole sources) placed along either the right or left
edge of the sample, as indicated respectively by the cyan
and magenta stars in Fig. 3(a). The spatial profiles of these

FIG. 3. Observation of edge-localized chiral edge states. (a),(b)
Photograph of the fabricated PhC with top copper plate removed
(a) and shifted (b) for clear visualization. (c),(e) Measured
intensity distributions excited by a line source near the right
or left boundary in (a), operating at frequencies of 15.3 GHz and
17.2 GHz, respectively. (d),(f) Measured ratios of edge-localized
energy. The arrows point to 15.3 GHz in (d) and 17.2 GHz in (f).

PHYSICAL REVIEW LETTERS 132, 113802 (2024)

113802-3



line sources respectively match the edge states for the
second and third gaps, as shown in Fig. 2(d). We exper-
imentally measure the fields produced by each constituent
dipole source, and map out the intensity distribution
induced by the entire line source. The results are shown
in Figs. 3(c) and 3(e) for two different frequencies in the
second and third gaps (see Supplemental Material for more
details about the excitation of the line source [50]).
Figure 3(c) shows the measured intensity distribution for

a line source on the right boundary [cyan stars in Fig. 3(a)]
at a frequency of 15.3 GHz (in gap 2). The intensity is
uniformly distributed along the right boundary, matching
both the profile of the line source and the predicted profile
of the eigenstate at this frequency [Fig. 2(d)]. For com-
parison, we also verified that for other choices of source
profiles, the resulting intensity profile does not match the
source profile (see Fig. S3 [50]). To quantify the degree of
localization of the measured intensity profile, we define

Rl ¼
R
Πs
jEzj2dxdyR

Π jEzj2dxdy
; ð2Þ

where jEzj2 is the electric field intensity excited by the line
source, Π denotes the entire area of the sample, and Πs
denotes the area covering the rightmost unit cells in the
sample [encircled by the cyan dashed line in Fig. 3(c)]. A
larger value of Rl indicates that the fields are more strongly
localized near the right boundary. Figure 3(d) plots the
measured Rl versus frequency. We see that Rl exhibits a
prominent peak around 15.3 GHz, coincident with gap 2,
and takes on lower values at other frequencies. These
results confirm the prediction that the edge states in gap 2
are localized along the right boundary, in accordance with
the point-gap winding νx;2 ¼ 1 and νy;2 ¼ 0.
Similarly, when the line source is placed at the left

boundary [magenta stars in Fig. 3(a)], the measured
intensity profile at 17.2 GHz is strongly localized along
the left boundary, as shown in Fig. 3(e). Using a locali-
zation measure Rl, defined similarly to Eq. (2) but singling
out the leftmost unit cells, we find that the localization is
enhanced at frequencies coinciding with gap 3, as shown
in Fig. 3(f). These results are again consistent with the
theoretical predictions [Fig. 2(d)]. Results for other choices
of source profile can be found in Fig. S4 [50].
By adjusting the design of the PhC, we can induce

different point-gap winding numbers, so that the NHSE
manifests differently. Figure 4(a) shows a PhC unit cell
with broken mirror symmetry in both the x and y directions.
The bulk spectrum (double-PBCs) is similar to the previous
case, with clear line gaps. To determine the point-gap
windings, we take supercells with x-PBC=y-OBC [Fig. 4(c)]
and y-PBC=x-OBC [Fig. 4(d)]; these two cases give
identical spectra [colored lines in Fig. 4(b)] containing
loops in both gaps with νx;2 ¼ 1, νy;2 ¼ 1, νx;3 ¼ −1,
and νy;3 ¼ −1. The NHSE is thus predicted to localize
the chiral edge states toward both the þx and þy directions

in gap 2, and toward the −x and −y directions in gap 3. We
then construct a finite sample under double-OBCs and plot
its eigenfrequencies as diamond markers in Fig. 4(b). In this
system, gaps 2 and 3 are found to be spanned by edge states,
whose eigenfunctions are localized on the upper-right
sample corner [Fig. 4(e) for gap 2] and lower-left sample
corner [Fig. 4(f) for gap 3], respectively, consistent with
predictions of the NHSE.
Next, we implement an experimental sample with the

loss configuration described in the previous paragraph [see
Fig. 4(g)]. The eigenstates are investigated using a pro-
cedure similar to what we have previously described; in this
case, we implement corner sources consisting of the dipole
sources indicated by cyan or magenta stars in Fig. 4(g),
matching the spatial profiles of the simulated eigenstate
in Figs. 4(e) and 4(f). The resulting measured intensity
distributions are shown in Figs. 4(h) and 4(i), respectively
(more measurement results, for other source profiles, are
shown in Figs. S5–S7 [50]). In Fig. 4(j), we plot the spectral
response of the energy localization near the two corners,
defined by analogy to Eq. (2), with the singled-out regions
Πs now consisting of the cyan and magenta rectangles in
Figs. 4(h) and 4(i), respectively. We thus conclude that the
chiral edge states are strongly localized around the upper-
right and lower-left corners at frequencies in gap 2 and
gap 3, respectively, consistent with the predictions in
Figs. 4(e) and 4(f).

  

FIG. 4. Observation of corner-localized chiral edge states.
(a) Unit cell of the PhC. (b) Colored lines: eigenfrequencies
for the supercell in (c) under x-PBC=y-OBC and (d) under
y-PBC=x-OBC. Rhombic dots: Eigenfrequencies for the sample
under double-OBCs in (g). (e),(f) Eigenfunctions for the sample
in (g). (h),(i) Measured intensity distributions excited by the
corner source in (g). (j) Measured ratios of corner-localized
energy. The arrows represent 15.3 GHz and 17.2 GHz.
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The above results can be understood in terms of a bulk-
boundary correspondence governed by a hybrid topological
invariant

νn ¼ ðCn; νx;n; νy;nÞ ð3Þ

for each gap n. Only a combination of the Chern number
and point-gap winding numbers can predict the existence
and localization behavior of the edge states. The Chern
number Cn determines the number of chiral edge states in
the gap, while the two point-gap winding numbers deter-
mine how they are localized in the x and y directions [50].
In Fig. S8, we study the boundary modes in a gap with a
large Chern number Cn ¼ 2 and find two branches of
localized chiral edge states spanning in the gap [50].
In conclusion, we have demonstrated the existence of edge

and corner localized chiral edge states in a gyromagnetic PhC
exhibiting the NHSE. The Chern-type bulk-boundary corre-
spondence has been generalized to the non-Hermitian regime,
for which we have proposed a hybrid topological invariant
that incorporates both the Chern number and two winding
numbers to accurately predict the boundary states in both
Hermitian and non-Hermitian cases. Our Letter represents
the first observation of the NHSE in a PhC, going beyond the
tight-binding approximation [33]. Because of the role of the
chiral edge states, the NHSE in this system exhibits superior
robustness against local defects compared to previous
NHSE realizations [50]. Our findings may find applications
in lasing [52] and robust light harvesting [39].
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