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We present a model of cold QCD matter that bridges nuclear and quark matter through the duality
relation between quarks and baryons. The baryon number and energy densities are expressed as functionals
of either the baryon momentum distribution, fB, or the quark distribution, fQ, which are subject to the
constraints on fermions, 0 ≤ fB;Q ≤ 1. The theory is ideal in the sense that the confinement of quarks into
baryons is reflected in the duality relation between fQ and fB, while other possible interactions among
quarks and baryons are all neglected. The variational problem with the duality constraints is formulated and
we explicitly construct analytic solutions, finding two distinct regimes: a nuclear matter regime at low
density and a quarkyonic regime at high density. In the quarkyonic regime, baryons underoccupy states at
low momenta but form a momentum shell with fB ¼ 1 on top of a quark Fermi sea. Such a theory describes
a rapid transition from a soft nuclear equation of state to a stiff quarkyonic equation of state. At this
transition, there is a rapid increase in the pressure.
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Introduction.—Understanding cold, dense QCD matter
is a difficult problem. Slightly above nuclear saturation
density, the importance of many-body forces complicates
the physical picture. The distinction between baryon and
quark degrees of freedom is not clear-cut and in fact a
proper description should allow a dual simultaneous
description of both quarks and baryons. This Letter
attempts such a dual description.
We construct such a dual model on the basis of very

simple principles. This model is analytically solvable. It
has its consequences that the high-density phase is “quar-
kyonic.” The notion of quarkyonic matter has emerged
from studies of cold, dense QCD in the limit of a large
number of colors, Nc → ∞, where the quark screening
effects to color confinement are suppressed by a factor
1=Nc. At a finite quark chemical potential μQ, the confine-
ment persists to μQ ∼

ffiffiffiffiffiffi
Nc

p
ΛQCD (ΛQCD ≃ 300 MeV:

dynamical scale in QCD) until quarks Debye screen gluons,
while quarks establish the Fermi sea at much lower density,
with μQ ∼ ΛQCD. At ΛQCD ≪ μQ ≪

ffiffiffiffiffiffi
Nc

p
ΛQCD, there must

be quark matter with the confinement. This paradoxical
feature was resolved by assuming baryons as effective
degrees of freedom on top of a quark Fermi sea [1] (see,
however, Ref. [2]). This dual feature, with quarks and
baryons in different domains of momenta for a single phase
of matter, is suitable to describe continuous evolution from
nuclear matter to weakly coupled quark matter [3–8].
Models of quarkyonic matter are shown to reveal an

equation of state (EOS) that rapidly stiffens from low to
high density [9–15] (see also Refs. [16–21]) and therefore

has features consistent with the observed properties of
neutron stars [22–35]. Notably, these features encompass a
rapid rise in the sound speed [36–49] and the vanishing of
the trace anomaly signifying the conformal nature of dense
matter [50–55] (see also Ref. [56]).
In this Letter, we present dynamical descriptions for

quarkyonic matter bymaking full use of the duality between
baryons and quarks [57,58] (see also Refs. [59,60]). The
baryon and energy densities are expressed by either baryonic
or quark degrees of freedom, characterized by the occupa-
tion probability of momentum states, fBðkÞ and fQðqÞ, for
baryons and quarks, respectively (the letters k and q are used
exclusively for baryon and quark momentum, respectively).
Since baryons are composed of quarks, there is a relationship
between fB and fQ, allowing a dual description without
double counting of quark contributions.
The simplest description one can imagine of such matter

is that except for the confinement of quarks into baryons,
interactions of quarks and baryons can be ignored. Such an
idealized matter we will call “IdylliQ” (ideal dual quar-
kyonic) matter. We formulate a variational problem to
minimize the energy density functional εB½fB� ¼ εQ½fQ� for
a given baryon density nB, and determine the distribution
fB and fQ. Even such an idealized model is nontrivial due
to the duality relation and quantum mechanical constraints
0 ≤ fQ;B ≤ 1. The quark substructure constraint is crucial
for rapid evolution of stiffness from nuclear to quark matter
[57,58]. For this IdylliQ model, we establish the momen-
tum shell of baryons on top of the quark Fermi sea as
schematically shown in Fig. 1. IdylliQ theory gives a novel
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alternative explanation for the previously proposed picture
of quarkyonic matter [1,9].
Duality.—We posit the duality relation between fQ for

quarks with a given color and fB for baryons as (notation:R
k ≡

Rf½ddk�=½ð2πÞd�g) [57,58]
½fQðqÞ�fσ ¼

X
i¼n;p;���

X
σ0¼↑;↓

Z
k

�
φ

�
q−

k
Nc

��
iσ0

fσ
½fBðkÞ�iσ0 ; ð1Þ

where φ is a single quark momentum distribution with the
flavor f and spin σ in a single baryon state of a species i and
spin σ0. Collecting quark contributions from each baryon
leads to quark distributions in dense matter. In this Letter,
we limit ourselves to symmetric nuclear matter and include
a spin-isospin degeneracy factor 4 in the expressions of
thermodynamic quantities, but elsewhere we drop the spin-
flavor indices f, σ. The extension for multiflavors and
multibaryon species will be discussed in the forthcoming
papers.
The normalization is

R
q φðqÞ ¼ 1. The dual expression

of the baryon number readily follows from Eq. (1) as

nB ¼ 4

Z
k
fBðkÞ ¼ 4

Z
q
fQðqÞ: ð2Þ

The energy densities in terms of baryons and quarks are

εB½fB� ¼ 4

Z
k
EBðkÞfBðkÞ;

εQ½fQ� ¼ 4

Z
q
EQðqÞ

�
NcfQðqÞ

�
: ð3Þ

Remember fQ is defined for a fixed color, fQ ≡ fRQ ¼
fGQ ¼ fBQ with which nB ¼ nRQ ¼ nGQ ¼ nBQ. A single baryon
is assumed to have the energy contributions summed from
Nc-confined quarks, EBðkÞ ¼ Nc

R
q EQðqÞφðq − k=NcÞ.

Then a duality relation follows, ε ¼ εB½fB� ¼ εQ½fQ�.

As quarks are confined in a spatial domain of the baryon
size ∼Λ−1

QCD, quarks can be energetic and φðqÞ is spread to
momenta of ∼ΛQCD. The mechanical pressure inside of a
baryon is large.
In this Letter, going from low to high densities we keep

using the same φ determined in vacuum. Our main target
here is the transient regime from baryonic to quark matter,
where using φ for localized quarks may not be a bad
approximation. The structural changes in baryons, such as
swelling, would possibly increase the low momentum
components of φ, but such modifications merely shift
the onset of quark matter formation to lower density.
Minimization of energy functional.—With duality (1) as

a constraint, we calculate the energy density ε for a given
nB. We consider energy functionals

ε ¼ εB½fB�jnB ¼ εQ½fQ�jnB ; ð4Þ

and minimize them by optimizing fB or fQ while holding
nB fixed. A novelty in our optimization program is that
the solutions are determined not only by the stationary
condition δε=δf ¼ 0 but also by the boundary conditions
fB;Q ¼ 0 or 1. The thermodynamic energy density is
obtained by substituting the optimized distributions,
εEOSðnBÞ ¼ εB½f�B�jnB ¼ εQ½f�Q�jnB .
In practice, one can find the f�B and f�Q by minimizing

ε̃ ¼ εB½fB� − λBnB ¼ εQ½fQ� − λQnQ; ð5Þ

where λB ¼ NcλQ. It is tempting to identify the λ’s as
chemical potentials and ε̃ as the thermodynamic functional.
Unfortunately they do not satisfy the thermodynamic
relations if solutions are partly determined by the boundary
conditions. Hence, we use ε̃ only to find f�B and f�Q, and use
them in computations of εEOSðnBÞ.
Global constraints.—The constraints in our theory

appear global, as fQ at a given momentum depends on
fB for the entire momentum range. The variation leads to

δε̃

δfBðkÞ
¼ EBðkÞ − λB;

δε̃

δfQðqÞ
¼ EQðqÞ − λQ: ð6Þ

At momenta with δε̃=δfB;Q < 0, greater fB;Q reduces ε̃ and
grows toward the boundary fB;Q ¼ 1, while δε̃=δfB;Q > 0

drives fB;Q to the other boundary, fB;Q ¼ 0. We would get
the optimized distributions

fvarB ðkÞ ¼ ΘðkF − kÞ; fvarQ ðqÞ ¼ ΘðqF − qÞ; ð7Þ

where kF and qF are determined through λB ¼ EBðkFÞ
and λQ ¼ EQðqFÞ.
The above solutions are not usable everywhere. For

instance, fvarQ at large momenta is incompatible with the
sum rule (1); at large momenta (q ≫ k=Nc), the scaling

FIG. 1. Evolution of fB and fQ from the nuclear (dotted) to
quarkyonic regime (solid). The saturation of quark states drives
baryons into the relativistic regime. Arrows in the rightmost
panels indicate increasing μB.
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should be fQðqÞ ∼ nBφðqÞ. Another problem is that, if we
keep using fvarB in the regime ΛQCD ≪ kF ≪ NcΛQCD, then
fQð0Þ ∼ nBφð0Þ ∼ k3F=Λ3

QCD, violating fQ ≤ 1 at q ¼ 0.
Our problem is to patch the candidates of solutions, found
from variational calculations and the boundary conditions,
into the form consistent with the duality constraints, and
then to minimize the energy.
Solvable model.—What makes the dual theory nontrivial

is its global nature. The difficulty lies in the reconstruction
of fB from a given fQ. At high density we have good
reasoning to choose fQ ¼ 1 for some interval of q. But it is
difficult to tell which fB gives fQ ¼ 1 while not violating
fQ ≤ 1 anywhere. To uncover the general features of the
dual theory, we choose a specific φ that reduces the global
problem to the one determining a couple of global con-
stants. We choose

φ3dðqÞ ¼
2π2

Λ3

e−q=Λ

q=Λ
; ð8Þ

which is the inverse of a linear differential operator
L̂ ¼ −∇2

q þ ð1=Λ2Þ. Applying this operator to the sum
rule (1), we find the local relation between fB and fQ
(d ¼ 3),

fBðNcqÞ ¼
Λ2

Nd
c
L̂½fQðqÞ�: ð9Þ

Here, we assume EBðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

B

p
with MB being a

constant as we focus on the deconfining aspect. The single
quark energy can also be determined as

EQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

Q

q �
1 −

ðd − 1ÞΛ2

q2 þM2
Q
−

M2
QΛ2

ðq2 þM2
QÞ2

�
; ð10Þ

where MQ ≡MB=Nc. We note E0
QðqÞ > 0 everywhere.

We must examine which fQ satisfies fB ¼ 0 or
fB ¼ 1. For this purpose we introduce y�ðqÞ ¼ e�q=Λ=q,
which satisfies L̂½y�� ¼ 0. The boundary fBðNcqÞ ¼ 0

can be obtained as ffB¼0
Q ðqÞ ¼ cþyþðqÞ þ c−y−ðqÞ.

Meanwhile fBðNcqÞ ¼ 1 can be obtained as ffB¼1
Q ðqÞ ¼

Nd
c þ dþyþðqÞ þ d−y−ðqÞ. The constants c� and d� must

be chosen to keep 0 ≤ fQðqÞ ≤ 1.
Now we have exhausted candidates of local solutions for

fQ: the boundary values fQ ¼ 0, 1 and those dual to
fB ¼ 0, 1. The question is how to patch them. At momenta
where two different solutions meet, the second derivative
in L̂ and the condition 0 ≤ fB ≤ 1 demands fQ to be
continuous up to the first derivative. For example, acting L̂
on a function fbuQ ¼ ηðqÞΘðqbu − qÞ generates the terms
η0ðqbuÞδðq − qbuÞ and ηðqbuÞδ0ðq − qbuÞ. To cancel such
delta’s violating the condition fB ≤ 1, we have to add a

function fjointQ ¼ ξðqÞΘðq − qbuÞ with ξðqbuÞ ¼ ηðqbuÞ and
ξ0ðqbuÞ ¼ η0ðqbuÞ. We construct such a fjointQ using solutions

ffB¼1
Q and ffB¼0

Q .
Transitions from baryonic to quark matter.—We go over

from a dilute baryonic matter to a dense quark matter by
patching the candidates of local solutions.
In dilute matter one can simply use the ideal baryon

gas fidBB ðkÞ ¼ ΘðkF − kÞ and its dual expression fidBQ .
This regime continues until fidBQ reaches the upper bound.

It occurs first at q ¼ 0 when kF ≃
ffiffiffiffiffiffiffiffiffiffiffi
2=Nc

p
Λ or nB=n0 ¼

2.58 × ðΛ=0.4 GeVÞ3 for Nc ¼ 3 (n0 ≃ 0.16 fm−3: normal
nuclear density). Note that this implies the saturation
density is parametrically small compared to the QCD
scale Λ3.
In the postsaturation regime, we can no longer use the

ideal baryon gas picture. For the low momentum part of fQ,
the only candidate is fQ ¼ 1. We found that the solution
must involve three segments (two segment models cannot
satisfy the continuity at the first derivative),

fQðqÞ ¼ Θðqbu − qÞ þ ffB¼1
Q ðqÞΘðqsh − qÞΘðq − qbuÞ

þ ffB¼0
Q ðqÞΘðq − qshÞ; ð11Þ

where dþ in ffB¼0
Q must be zero. Its dual baryon distribu-

tion is (k ¼ Ncq; kbu ¼ Ncqbu; ksh ¼ Ncqsh)

fBðkÞ ¼
1

Nd
c
Θðkbu − kÞ þ Θðksh − kÞΘðk − kbuÞ; ð12Þ

which is small in the bulk Fermi sea at k ≤ kbu but forms the
baryon shell with the maximum height at kbu < k ≤ ksh,
reproducing the form conjectured by McLerran and
Reddy [9]. This shape is energetically favored as fB and
fQ are kept as compact as possible. Figure 2 shows the
forms of fidBB and fidBQ in the dilute regime at nB=n0 ≲ 2.6,
and the forms of fB (12) and fQ (11) in the postsaturation
regime at nB=n0 ≳ 2.6.
With four conditions from two junction points, one can

express c�, d−, and ΔQ ¼ qsh − qbu as functions of qsh.
The parameter qsh is determined by observing that the
δε̃=δfB > 0 for EB > λQ introduces the energy cost unless
fB drops from 1 to 0 at λB ¼ EBðNcqshÞ. Here, we display
only the equation to determine ΔQ as it is needed for
computations of EOS. The equation to be solved is

Λþ qbu
Λþ qbu − ðΛþ qshÞe−ΔQ=Λ

¼ N3
c : ð13Þ

Below, we discuss the thickness of the baryon momen-
tum shell, ΔB ¼ NcΔQ, which is obtained as a solution
of this transcendental equation. Close to the momen-
tum ksh ¼ ksat at which fQ saturates, we expand the
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equation with respect to δk≡ ksh − ksat, then the solution is
approximately

ΔB ≃ ksh −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksat

1þ ksat=ðNcΛÞ
δk

s
; ð14Þ

where we assumed δk ≪ Λ and kbu ≪ Λ then expanded
them up to OðδkÞ and Oðk2buÞ, respectively. The ksh
derivative of ΔB ∝

ffiffiffiffiffi
δk

p
diverges as δk−1=2 for δk → 0.

At large momentum, ksh > Λ, the shell thickness is

ΔB ≃
Λ
N2

c
þ Λ2

Ncksh
: ð15Þ

It approaches constant for a large ksh.
Equations of state.—We examine the unified EOSs.

Below quark saturation, the EOSs are simply those of
the ideal baryon gas, nbelowB ¼ 2k3F=3π

2 and εbelow ¼
4
R
k EBðkÞΘðk − kFÞ. Above the saturation, the bulk part

of fB is depleted,

naboveB ¼ 4

Z
ksh

kbu

d3k
ð2πÞ3 þ

4

N3
c

Z
kbu

0

d3k
ð2πÞ3 ;

εabove ¼ 4

Z
ksh

kbu

d3k
ð2πÞ3 EBðkÞ þ

4

N3
c

Z
kbu

0

d3k
ð2πÞ3 EBðkÞ: ð16Þ

Because of the depletion, the growth of ksh increase nB more
slowly than in the presaturation regime, but the energy per
particle ε=nB grows much faster in the postsaturation
regime. Accordingly the pressure P ¼ n2B∂ðε=nBÞ=∂nB is
large; the EOS is stiff.
It is important to examine whether thermodynamic

quantities are continuous at quark saturation. At saturation
kbu ¼ 0 in Eq. (16) so that nB and ε are continuous. Next
we check whether derivatives of ε with respect to nB are
continuous. We first compute

2π2
∂naboveB

∂ksh
¼ k2sh −

�
1 −

1

N3
c

�
k2bu

∂kbu
∂ksh

: ð17Þ

Because of the phase space factor k2bu, at saturation
the second term specific to the postsaturation regime
vanishes, leaving continuous ∂nB=∂ksh. Similarly ∂ε=∂ksh
is continuous and so are μB ¼ ∂ε=∂nB and the pressure
P ¼ μBnB − ε. Note that this continuity, relying on the
vanishing phase space for kbu → 0, does not hold in 1þ 1
dimensions; indeed a 1þ 1 dimensional IdylliQ model
yields discontinuous μB, which is not permitted in the
thermodynamics.
In 3þ 1 dimensional IdylliQ theory, unfortunately the

continuity holds only up to the first derivative. The baryon
susceptibility χB has a discontinuity at saturation and so
does the sound speed v2s . The susceptibility χB drops
discontinuously; this dropping should not be confused
with that in a second order phase transition where χB
jumps up. Figure 3 shows the behavior of v2s as a function
of nB=n0 for Λ ¼ 0.4 GeV. Note that in our model, v2s may

FIG. 3. Sound speed v2s as a function of nB=n0 for
Λ ¼ 0.4 GeV.

FIG. 2. Evolution of fBðkÞ (left) and fQðqÞ (right) with increasing nB for Λ ¼ 0.4 GeV.
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exceed the conformal value v2s ¼ 1=3 even at high densities
where we expect it to be subconformal [3–8], depending on
the value of Λ. Also, as mentioned earlier, v2s is singular at
saturation and the parametric dependence of the singular
part, v̂2s , on δk is

v̂2s ∼ −
kshksat
M2

B

dΔB

dksh
∼

1

N3
c

ffiffiffiffiffiffiffi
ksat
δk

r
; ð18Þ

given that ksh ∼ ksat ∼ N−1=2
c Λ and MB ∼ NcΛ.

Minimal corrections to IdylliQ model.—We outline how
the singular behavior of ΔB and v2s is remedied by
smoothing out the sharp edge of the baryon distribution.
As the divergent part of v2s (18) is proportional to
dΔB=dksh, we focus on the singular behavior of ΔB. We
define a function gQðkÞ, which is the quark occupation at
the origin corresponding to the baryon Fermi sea filled up
to momentum k:

gQðkÞ≡
Z
k0
φ

�
k0

Nc

�
Θðk − k0Þ: ð19Þ

Below the saturation density, kFB ¼ ksat − 0þ, the condition
fQðq ¼ 0Þ → 1 is equivalent to gQðkFBÞ → 1.
Above the saturation density, the conditionfQðq ¼ 0Þ ¼ 1

becomes

gQðkshÞ −
�
1 −

1

N3
c

�
gQðkbuÞ ¼ 1; ð20Þ

At saturation, this equation is equivalent to Eq. (13) that sets
the relation between ksh and ΔB.
By taking the ksh derivative on both sides of Eq. (20), we

obtain

dΔBðkshÞ
dksh

¼ −
N3

c

N3
c − 1

g0QðkshÞ
g0QðkbuÞ

þ 1; ð21Þ

where g0QðkÞ ¼ e−k=ðNcΛÞ × Nck=Λ2. Near the saturation,
g0QðkbuÞ ∼ kbu ∝ δk1=2 → 0 yields the singularity in
dΔBðkshÞ=dksh and v̂2s . The problematic g0QðkÞ ∝ k scaling
comes from the ∂Θðk − k0Þ=∂k ¼ δðk − k0Þ term that picks
out the integrand ∼k02φðk0=NcÞ ∼ k0 exactly at k0 ¼ k. A
little smearing of the baryon Fermi surface cures this
problem: replacing Θðk − k0Þ with a smooth function
gBðk − k0Þ whose damping scale is ∼kdif , one can make
g0QðkÞ ∼ kdif finite for k → 0. In turn, at saturation we
have dΔBðkshÞ=dksh ∼ −ksh=kdif and v̂2s ∼M−2

B k3sat=kdif∼
N−3

c ksat=kdif . For the causal sound speed, the required
width is kdif ≳ N−3

c ksat, much smaller than the Fermi
momentum at saturation. We note that too large smearing
washes out the peak structure in v2s by reducing the
disparity between the nuclear and quark pressure.

Viewing nuclear forces as quark exchanges would explain
the precursor behavior toward the quark regime. Leaving
aside the details of such smoothing, our theory firmly
establishes an inevitable stiffening caused by the quark
substructure.
Summary and discussions.—The description IdylliQ

matter we present is ultimately very simple. At low
densities, there is a filled Fermi distribution of nucleons,
and quarks may be thought of as degrees of freedom inside
the nucleons with momenta out to ∼ΛQCD. At some density
there is a transition characterized by the saturation of quark
states. At higher density, quarks form a filled Fermi sea
with an exponentially falling tail above some momentum.
In the dual description, baryons underoccupy a bulk Fermi
sea but form a fully filled shell at a Fermi surface. These
distributions are shown in Fig. 2.
We chose the specific model (8) for φ to solve the IdylliQ

theory exactly. The following findings should be universal
for other choices of φ: (a) the saturation of the quark
distribution fQ, as demonstrated for different φ [57,58], and
the underoccupation of fB at lower momenta coming from
the quark substructure constraint; (b) the asymptotic
behavior of fQðqÞ ∼ nBφðqÞ at q → ∞; (c) existence of
the shell structure in fB, energetically favored to make fQ a
more compact distribution. Actually these properties
largely survive for the IdylliQ model perturbed by wide
class of interaction functionals of fB;Q. Hence, the IdylliQ
model offers a good baseline for theories of quarkyonic
matter.
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