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The paradigmatic example of deconfined quantum criticality is the Neel to valence bond solid phase
transition. The continuum description of this transition is the N ¼ 2 case of the CPN−1 model, which is a
field theory of N complex scalars in 3D coupled to an Abelian gauge field with SUðNÞ × Uð1Þ global
symmetry. Lattice studies and duality arguments suggest the global symmetry of the CP1 model is
enhanced to SO(5). We perform a conformal bootstrap study of SO(5) invariant fixed points with one
relevant SO(5) singlet operator, which would correspond to two relevant SUð2Þ × Uð1Þ singlets, i.e., a
tricritical point. We find that the bootstrap bounds are saturated by four different predictions from the large
N computation of monopole operator scaling dimensions, which were recently shown to be very accurate
even for small N. This suggests that the Neel to valence bond solid phase transition is described by this
bootstrap bound, which predicts that the second relevant singlet has dimension ≈2.36.
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Introduction.—Deconfined quantum critical points
(DQCPs) are second order phase transitions between one
phase with symmetry group H, and a second phase with
group H0, where H0 is not a subgroup of H [1,2]. These
phase transitions go beyond the standard Landau-Ginzburg
transitions, such as theWilson-Fisher fixed points, whereH
would be a subgroup of H0. A striking feature of DQCPs is
that they are described by continuum gauge theories in
2þ 1 dimensions whose fields are not associated with
quasiparticles on either side of the transition, i.e., they are
deconfined. Despite many years of work, however, the
existence of the simplest DQCP remains controversial.
The paradigmatic example of a DQCP is the transition

between the Neel and valence bond solid (VBS) phases of
quantum antiferromagnets on a 2D square lattice [3], where
the Neel phase breaks an SUð2Þ symmetry, while the VBS
phase breaks a different Uð1Þ symmetry. In the continuum
limit, the Neel-VBS phase transition is described by the 3D
CP1 model [4] with Lagrangian

L ¼
X2
i¼1

½jð∇μ − iAμÞϕij2 þ λðjϕij2 − 1Þ�; ð1Þ

where ϕi are complex scalar fields, Aμ is an Abelian gauge
field, and λ is a real scalar. The SUð2Þ symmetry rotates the
ϕi, while the Uð1Þ symmetry is generated by the current
ϵμνρFνρ, which is conserved due to the Bianchi identity [6].
This theory is strongly coupled, so it is hard to determine if
it actually flows to a conformal field theory (CFT), i.e., if it
describes a second order phase transition.
Instead of directly analyzing the continuum theory,

lattice methods have been applied to various discrete
quantum model that are believed to lie in the same
universality class. These studies have produced a bewilder-
ing array of critical exponents [7–14], while others have
claimed the transition is first order [15–18]. One notable
lattice study suggested that the SUð2Þ × Uð1Þ symmetry is
enhanced to SO(5) at the putative critical point [19], which
was later attributed to possible quantum dualities [20].
Most lattice studies so far have tried to find a fixed point

by tuning one parameter, i.e., they assumed that there was
one relevant operator uncharged under SUð2Þ × Uð1Þ
[21,22]. The SO(5) symmetry enhancement would then
imply there is no relevant SO(5) singlet [26], but this was
also ruled out by the conformal bootstrap [27–29]. This led
some to propose the theory is described by a weakly first
order phase transition, caused by the merger and annihi-
lation [31,32] of the CP1 model with a related tricritical
model. This scenario received recent support by the study
of a theory with microscopic SO(5) symmetry using the
fuzzy sphere method [33].
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In this Letter, we will instead show evidence that the
Neel-VBS phase transition is a tricritical fixed point, with
two relevant singlets of SUð2Þ × Uð1Þ, or one relevant
singlet of SO(5). We use the fact that the scaling dimension
Δq of local operators in the CP1 model with charge
q∈Z=2 under the Uð1Þ symmetry, called monopole
operators [34], can be computed to surprising accuracy
using the large N expansion in the related CPN−1 model
[35,36]. We review the evidence for this both from
comparison to lattice studies for q ¼ 1=2 and various N
[37,38], as well as for N ¼ 1 and various q [39] by
comparing to the well-studied critical Oð2Þ model via
particle-vortex duality [40,41].
We then perform a conformal bootstrap study of SO(5)

invariant CFTs whose only relevant operators are the
singlet s, rank-1 v, rank-2 t, and rank-3 t3 scalars, as
suggested by large N. The bootstrap rigorously bounds the
space of allowed scaling dimensions of these operators, as
well as of the irrelevant rank-4 scalar t4. Physical theories
often appear at the boundary of the allowed bootstrap
region. In our case, by looking at the point on the boundary
given by the large N value of Δv and then maximizing Δt,
we can read off the values of all the other scaling
dimensions. As shown in Table I, our results for Δt, Δt3 ,
and Δt4 after imposing Δv all match the large N estimates,
and we also predict that Δs ¼ 2.36.
In Table I we also compare our results to other studies

that found SO(5) symmetry: the original lattice study [19],
and the recent fuzzy sphere paper [33] that starts from an
SO(5)-invariant theory. While [19] did not report a relevant
SO(5) singlet, since they assumed the SUð2Þ × Uð1Þ theory
was critical, the two scaling dimensions they did predict
match ours [42]. Similarly, [33] argued that the theory is
weakly first order, such that critical exponents depend on
the value of the coupling, but nonetheless we find that their
results are similar to ours for a certain value of their
coupling [43], except that their singlet has slightly bigger
dimension.
The rest of this Letter is organized as follows. In the

next section, we review properties of the CPN−1 theory,

including the large N expansion of monopole operators,
and the SO(5) symmetry enhancement for N ¼ 2. In the
“Numerical conformal bootstrap” section, we describe our
bootstrap setup, how to numerically implement it using the
Skydiving algorithm, and the resulting estimates for CFT
data. We end with a discussion of our results.
The CP1 model.—We now review the CP1 model, first

by generalizing to the CPN−1 model at large N, and then by
discussing the conjectured SO(5) symmetry enhancement
for N ¼ 2.
The CPN−1 model: We start with the Lagrangian of N

complex scalar fields ϕi coupled to an Abelian gauge field
Aμ in 3D:

L¼
XN
i¼1

½jð∇μ−iAμÞϕij2þm2jϕij2�þu

�XN
i¼1

jϕij2
�
2

þ F2

4e2
;

ð2Þ

where Fμν ≡ ∂μAν − ∂νAμ is the field strength. At large N,
we can tune m2 ¼ 0 to get a critical theory in the IR with
e; u → ∞, or tune both m2 ¼ u ¼ 0 to get a tricritical
theory in the IR with e → ∞ [44]. The critical theory is
called the CPN−1 model, since the ϕ4 interaction can be
written in terms of a Hubbard-Stratonovich field λ as in the
N ¼ 2 case (1), in which case the theory is equivalent to a
nonlinear sigma model with CPN−1 target space [5]. Both
the critical and tricritical theories have an SUðNÞ flavor
symmetry that rotates the ϕi, as well as a Uð1Þ topological
symmetry whose current ϵμνρFνρ is conserved due to the
Bianchi identity [45].
Local operators that transform under SUðNÞ but not

Uð1Þ can be constructed from the fields in the action ϕi and
Aμ, as well as λ for the critical theory. The scaling
dimension of these operators can be computed at large
N using standard Feynman diagrams [44,46–50], but the
large N expansion is not very accurate for small N [51].
Local operators that transform under Uð1Þ with charge

q∈Z=2 are not built from fields in the action, but instead
these monopole operators are defined as inserting magnetic
flux q ¼ ð1=4πÞ R F [34]. The lowest dimension mono-
poles are scalars and singlets under SUðNÞ that we denote
as Mq. Their scaling dimensions Δq are identified via the
state-operator correspondence with the ground state ener-
gies in the Hilbert space on S2 ×R with 4πq magnetic flux
through the S2, which can be computed at large N using a
saddle point expansion [35,55]. This calculation was
carried out to subleading order in [36], and the results
were found to be extremely accurate even at small N. For
instance, for q ¼ 1=2 we compare the large N estimates to
lattice studies for N ¼ 3, 4, 5, 6 [37,38] in Table II. For
N ¼ 1, the theory is dual to the Oð2Þ Wilson-Fisher fixed
point [40,41], so following [39] we can compare very
precise bootstrap estimates of rank 2q operators in the

TABLE I. Comparison of scaling dimensions of the lowest
dimension scalar operators in the singlet (s), vector (v), rank-2 (t),
rank-3 (t3), and rank-4 (t4) of SO(5), as determined from the
bootstrap study here, the large N expansion, the lattice study that
claimed SO(5) symmetry [19], and the recent weakly first order
fuzzy sphere study for a certain value of their coupling [33]. The
asterisk by Δv for bootstrap means we put it in to determine the
others.

Δv Δt Δt3 Δt4 Δs

Bootstrap 0.630� 1.519 2.598 3.884 2.359
Large N 0.630 1.497 2.552 3.770 � � �
Lattice 0.630(3) 1.5 � � � � � � � � �
Fuzzy sphere 0.584 1.454 2.565 3.885 2.845
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critical Oð2Þ model to Mq for low q [56], as we review in
Table III.
SO(5) symmetry enhancement: We now specialize to

N ¼ 2 and discuss the conjectured enhancement of the
SUð2Þ × Uð1Þ global symmetry to SO(5). In general,
the rank-2q symmetric traceless irrep of SO(5) includes
charge �q;�ðq − 1Þ;… irreps after decomposition to
SUð2Þ × Uð1Þ. For instance, the vector 5 of SO(5) decom-
poses as

5 → 30 ⊕ 1�1=2; ð3Þ

where dq denotes the dimension d (isospin ½ðd − 1Þ=2�)
irrep of SUð2Þ with charge q under Uð1Þ, and d�q means
both dq and d−q appear. As discussed in [19,20], we thus
see that the VBS order parameter M1=2 combines with the
Neel order parameter ϕiϕ†

j , which is the lowest dimension
scalar operator in the adjoint of SUð2Þ, to form the lowest
dimension vector operator v of SO(5).
Similarly, the rank-2 14 of SO(5) decomposes as

14 → 50 ⊕ 10 ⊕ 3�1=2 ⊕ 1�1: ð4Þ

Thus, the lowest dimension SUð2Þ × Uð1Þ singlet scalar
ϕiϕ†

i combines with M1, the composite monopole operator
ϕiϕ†

jM1=2, and a nonmonopole operator with isospin 2 to
form the lowest dimension rank-2 operator t of SO(5). This
also implies that Δϕiϕ†

i
¼ Δ1, where Δ1 ≈ 1.497 from

large N.
The rank-3 30 of SO(5) decomposes as

30 → 70 ⊕ 30 ⊕ 5�1=2 ⊕ 1�1=2 ⊕ 3�1 ⊕ 1�3=2; ð5Þ

which implies that M3=2 joins with a q ¼ 1=2 scalar
monopole as well as other operators to form the lowest

dimension rank-3 operator t3 of SO(5). This q ¼ 1=2 scalar
monopole cannot be the lowest dimension monopoleM1=2,
because that was already used to form v, so it must be at
least the second lowest dimension monopole M0

1=2 with
Δ0

1=2 ¼ Δ3=2. Since the large N estimate gives Δ3=2 ≈ 2.55,
this implies that the third lowest dimension q ¼ 1=2 scalar
monopole that would be used to form the second lowest
SO(5) vector v0 according to (3) must have an even bigger
dimension, which strongly suggests that its irrelevant. An
analogous argument suggests that the second lowest rank-2
t02 and rank-3 t03 must have dimensions bigger than Δ2 and
Δ5=2 with large N estimates 3.77 and 5.12 [36], respec-
tively, which shows that t and t3 are the only relevant
operators in their irreps.
The rank-4 55 of SO(5) decomposes as

55 → 90 ⊕ 50 ⊕ 10 ⊕ 7�1=2 ⊕ 3�1=2

⊕ 5�1 ⊕ 1�1 ⊕ 3�3=2 ⊕ 1�2; ð6Þ

which implies that M2 joins with M0
1, a SUð2Þ × Uð1Þ

singlet, and other operators to form the lowest dimension
rank-4 operator t4 of SO(5). Large N gives Δ2 ≈ 3.77, so
this singlet is irrelevant, while a similar argument suggests
that singlets that appear in the decomposition of higher rank
SO(5) operators are also irrelevant. If a second relevant
SUð2Þ × Uð1Þ singlet exists, then it must form the lowest
dimension SO(5) singlet scalar s. In terms of fields, this
second lowest singlet would be some linear combination of
F2 and λ2, which have dimension 4 at N → ∞.
The mixed irrep 350 of SO(5) decomposes as

350 → 50 ⊕ 30 ⊕ 10 ⊕ 5�1 ⊕ 5�1=2 ⊕ 3�1=2; ð7Þ

which includes an SUð2Þ × Uð1Þ singlet. Since the lowest
two such singlets were already used to form t and s, this
means the lowest dimension operator O350 must have at
least ΔO350 ≥ Δs, and probably much higher. The last irrep
we consider is the 35, which decomposes as

35 → 50 ⊕ 30 ⊕ 30 ⊕ 5�1=2 ⊕ 3�1 ⊕ 3�1=2 ⊕ 1�1=2; ð8Þ

which includes a q ¼ 1=2 scalar monopole. Since the
lowest two such operators were already used to form v
and t3, this means the lowest dimension operator O35 must
have at least ΔO35

≥ Δt3 , which suggests it is probably
irrelevant.
Numerical conformal bootstrap.—We will now describe

our numerical bootstrap study of the SO(5) invariant CFT.
We consider four-point functions of the lowest dimension
singlet s, vector v, and rank-2 t scalar operators of an SO(5)
invariant CFT. Imposing that these correlators are invariant
under permuting the four operators leads to crossing
equations, which constrain the scaling dimensions and
operator product expansion (OPE) coefficients that appear

TABLE II. Comparison of lowest charge monopole scaling
dimension Δ1=2 between large N and lattice studies for N ¼ 3, 4
[37] (JQ model) and N ¼ 5, 6 [38] (J1 − J2 model).

Δ1=2 N ¼ 3 N ¼ 4 N ¼ 5 N ¼ 6

Lattice 0.785 0.865 1.00(5) 1.1(1)
Large N 0.755 0.880 1.01 1.13

TABLE III. Comparison of charge q monopole scaling dimen-
sion Δq computed at large N extrapolated to N ¼ 1, to values of
the dual rank-2q operators in the critical Oð2Þmodel as computed
from the conformal bootstrap in [63].

Δq q ¼ 1=2 q ¼ 1 q ¼ 3=2 q ¼ 2

Oð2Þ 0.519 130 434 1.236 489 71 2.1086(3) 3.115 35(73)
Large N 0.506 09 1.1856 2.0087 2.9546
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in the OPEs of these correlators. In our case, we computed
the crossing equations using the general OðNÞ code [64]
from the project of [65], which yields 29 crossing equa-
tions. More details about the derivation of these crossing
equations can be found in the Supplemental Material [66],
while the explicit crossing vectors can be found in the
attached Mathematica file.
We bootstrap this system by truncating the 29 crossing

equations, rephrasing them as a semidefinite program as in
[67], which crucially assumes unitarity, and then solving
these constraints efficiently using SDPB [68]. We assume
that s, v, t, and t3 are the only relevant scalar operators in
any of the irreps that appear in the OPEs of the correlators
we consider, which is supported by the large N analysis of
the previous section. For Δs and Δ350 , we put the slightly
stronger gap 4 to improve numerical stability. We also
impose that s, v, t are unique [69] by scanning over the four
ratios of their OPE coefficients as in [63]. The output of the
bootstrap is an allowed region in the eight-dimensional
space fΔv;Δs;Δt;Δt3 ; ðλsss=λvvtÞ; ðλtts=λvvtÞ; ðλvvs=λvvtÞ;ðλttt=λvvtÞg.
Since this is a very large space, it would be computa-

tionally infeasible to map out the entire region, and we do
not find any evidence that the allowed region is a small
island. Instead, our hope is that the physical theory lies on
the boundary of the allowed region, as was the case for
bootstrap studies of many theories such as the critical OðNÞ
models [70,71] and QED3 with four fermions [72]. Our
strategy is to look at the point on the boundary of this eight-
dimensional space given by imposing the value Δv ≈ 0.63
that was predicted from the large N analysis, maximizing
Δt, and then reading off the CFT data given by the
approximate solution to the bootstrap equations at that
boundary point [70]. We can do this using the recently
developed Skydive method [73], which is currently the
most efficient way of finding the boundary of the allowed
region. Even with this method, it takes over a week for the
bootstrap to converge with bootstrap accuracy Λ ¼ 19 (See
Supplemental Material [66] for more details). The resulting
scaling dimensions of all lowest dimension scalar operators
up to rank 4, which is the highest rank we can access from
our setup, are given in Table I. Other CFT data, such as
ratios of OPE coefficients, are summarized in the
Supplemental Material [66].
Discussion.—In this Letter, we showed that a point on

the boundary of the allowed region of CFTs with SO(5)
symmetry corresponds to the large N estimate of scaling
dimensions of monopole operators in the CP1 model. In
particular, by inputting Δv, we found that Δt, Δt3 , and Δt4
matched their large N values. We also made a prediction for
a relevant SO(5) singlet Δs ≈ 2.34, which implies that the
CP1 theory is a tricritical fixed point in terms of SUð2Þ ×
Uð1Þ with relevant singlets: Δs and Δt ≈ 1.499. It would be
interesting to understand what happens to this putative
SO(5) invariant CFTwhen it is perturbed by this scalar, and
to determine the resulting phase diagram [74].

Curiously, aside from Δs our results are very similar to
those of the recent fuzzy sphere model [33], which claimed
to observe a weakly first order transition. Recent lattice
studies has also suggested the CPN−1 model stops being
critical below Nc ≈ 7 [15] or 4 ≤ Nc < 10 [18], perhaps
because the critical and tricritical theories merge and go off
into the complex plane. This is in some tension with the
previous match between large N and lattice studies for
N ¼ 3, 4, 5, 6 [37,38], as well as the fact that the N ¼ 1
theory is widely believed to be critical due to particle-
vortex duality. A possible resolution is that these theories
become tricritical below Nc. Indeed, a recent lattice study
suggested that the N ¼ 2 theory is tricritical [23], but
reported some different critical exponents than us and did
not discuss an enhanced SO(5) [75]. A possible resolution
is that the critical and tricritical theories reemerge from the
complex plane to become unitary CFTs below Nc. This
might also explain why the large N results for Δq in the
CPN−1 model, which is critical at large N, seem to match a
tricritical theory at smallN as the analytic continuation inN
for Δq might switch between the critical and tricritical
theories below Nc [77]. It would be interesting if the
bootstrap could be used to see the merger of the critical and
tricritical theories as a function of real N, just as the merger
and annihilation of the critical and tricritical three-state
Potts model was recently seen using the bootstrap as a
function of dimension 2 < d < 3 [78].
Looking ahead, we would like to improve our bootstrap

study so that we can find a rigorous island around the large
N values. One way might be to bootstrap a system of
correlators including the relevant rank-3 scalar t3, as
bootstrapping all relevant operators drastically improved
bounds in other cases such as the critical Oð2Þ and Oð3Þ
models [63,79]. This would also give us access up to rank-6
operators, which could then be compared to the large N
predictions corresponding monopole operators.
It would also be interesting to resolve a related tension

between the lattice results for critical QED3 with N ¼ 2
fermions [80–82], whose SUð2Þ × Uð1Þ symmetry was
conjectured to enhance to Oð4Þ [20,83–85], and bootstrap
bounds that ruled out these estimates [86]. As in the SO(5)
case discussed here, the conflict with bootstrap can be
avoided if we assume that N ¼ 2 QED3 is tricritical. The
large N estimate for monopole operators has also been
shown to be accurate at least for N ¼ 4, where there are
independent bootstrap results [72,87].
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