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Single molecule junctions are important examples of complex out-of-equilibrium many-body quantum
systems. We identify a nontrivial clustering of steady state populations into distinctive subspaces with
Boltzmann-like statistics, which persist far from equilibrium. Such Boltzmann subspaces significantly
reduce the information needed to describe the steady state, enabling modeling of high-dimensional systems
that are otherwise beyond the reach of current computations. The emergence of Boltzmann subspaces is
demonstrated analytically and numerically for fermionic transport systems of increasing complexity.
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Understanding complexmany-body quantum systems out
of equilibrium is fundamentally challenging [1–6] as well as
crucial for the design and optimization of quantum devices
(quantum computers, switches, sensors, etc.). Generic exam-
ples that attracted much attention recently are molecular
junctions, in which a single molecule is coupled to two
electrodes (fermion reservoirs) under a potential bias [7–12].
The field of molecular electronics is developing rapidly
due to experimental realizations of controllable single
molecule junctions [12–22] and theoretical ideas for new
functionality [23–33]. Especially promising are experiments
where the molecule obtains a nonequilibrium steady state
which substantially differs from its well-understood equi-
librium state. For example, assigning a global temperature to
a molecular junction is often irrelevant, and the concept of a
local temperature [34–36], or the assignment of different
temperatures to different degrees of freedom [27,37–39]
becomes instrumental.
Various theoretical approaches can be used to describe

such open quantum systems [40–43]. These often exhibit
a tradeoff between level of detail and practicability.
Approximate methods such as the NEGF-DFT framework
can account for details of electronic and vibronic inter-
actions [44,45]. Impurity models [46–48] enable numeri-
cally exact computations [49–59] of many-body dynamics,
but only for small systems. Markovian approximations can
greatly simplify the description of systems that are weakly
coupled to reservoirs [40,41], where the dissipative dynam-
ics follows Redfield or Lindblad equations [42,60]. When
the bath-induced dynamics is (comparatively) slow these
simplify to Pauli master equations [40,41]. Crucially, while
being conceptually straightforward, the solution of master
equations is still highly demanding when the dimensions of
Hilbert (or Fock) space become large [61]. These dimen-
sions can become notoriously high in polyatomic mole-
cules and supramolecular structures [62,63]. It is therefore

desirable to develop a theory that describes such high-
dimensional systems in the simplest possible way.
In this work we present an approach that allows to

reduce the complexity of nonequilibrium steady state
calculations in such systems. The approach is based on
the emergence of “equilibrated” subspaces, whose eigen-
state populations have the form PnðτÞ ≅ PðNÞðτÞBN;n,
where the internal distribution within each subspace,
{BN;n} is known (with

P
n∈N BN;n ¼ 1). Once such sub-

spaces are identified, the steady state probabilities to be in
each subspace can be calculated using ð∂=∂τÞPðNÞðτÞ ¼P

N0 kN0→NPðN0ÞðτÞ − kN→N0PðNÞðτÞ ¼ 0, with kN0→N ≡�P
n∈N

P
n0 ∈N0 kn0→nBN0;n0

�
. The dimension of the kinetic

equations is therefore reduced to the number of subspaces.
We demonstrate the usefulness of this approach, con-

ceptually and computationally, for several models, where
we identify subspaces with BN;n ≅ cNeð−En=kBTÞ, which we
term “Boltzmann subspaces.” This allows to interpret
{kN0→N} as “thermal rate constants” [41] for transitions
between the subspaces. Such subspaces are often indicative
of separation of timescales, with fast intraspace relaxation,
and slow interspace transitions. Remarkably, we also find
such subspaces in far from equilibrium steady states
without evident timescale separation.
Our basic model includes a system of fermions

with the Hamiltonian, ĤS ¼ P
M
m¼1 εmâ

†
mâm þ

1
2

P
M
i;j;k;l¼1 wijklâ

†
i â

†
j âlâk. Here â†m creates an electron in

the mth single particle state (spin-orbital) at energy εm, and
{wijkl} are the standard Coulomb interaction terms. When
ĤS commutes with all the orbital number operators, each
eigenstate is characterized by an occupation vector,
n ¼ ðn1; n2; ...; nMÞ, where nm ∈ 0, 1 corresponds to the
occupation of themth spin orbital, which defines the state’s
energy (ĤSjni ¼ Enjni) and total electron number
(
P

M
m¼1 â

†
mâmjni ¼ Nnjni). The system is weakly coupled
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to two reservoirs of noninteracting fermions, associated

with equilibrium densities, ρ̂K ¼ ð1=ZKÞe−βðĤK−μKN̂KÞ,
where K ∈ fR;Lg marks the right or left reservoir with,
ĤK ¼ P

kK εkK b̂
†
kK
b̂kK and N̂K ¼ P

kK b̂
†
kK
b̂kK . μK and ZK

are the chemical potential and partition function, and
β ¼ ð1=kBTÞ. The full Hamiltonian reads, Ĥ ¼ ĤSþP

K ∈ fR;LgfĤK þ ½V̂K ⊗ ÛK þ H:c:�g, where V̂KðÛKÞ is
the system (reservoir) electronic coupling operator, with
V̂K ¼ P

M
m¼1 λm;Kâ

†
m and ÛK ¼ P

kK
ξkK b̂kK . Under weak

coupling [41], the reservoirs induce changes in the eigen-
state populations, corresponding to electron absorption

(kðKÞn0→n¼ δn−n0;em jhn0jV̂Kjnij2ΓKðεmÞfK;m=ℏ) and emission

(kðKÞn0→n ¼ δn0−n;em jhnjV̂Kjn0ij2ΓKðεmÞð1 − fK;mÞ=ℏ) rates,

where fK;m ≡ 1=ð1þ eðεm−μKÞ=ðkBTÞÞ is the Fermi distri-
bution, and em ¼ ðδm;1; δm;2; ...; δm;MÞt. Here ΓKðεÞ ¼
2π

P
kK jξkK j2δðε − εkK Þ is the reservoir spectral density.

When accounting for coupling to (external or internal)
bosonic reservoirs in the weak coupling limit, addi-
tional changes in the system eigenstate populations are
induced, corresponding to energy absorption

�
kðBÞn0→n ¼P

N
nb¼1 jhnjV̂nb jn0ij2½JnbðEn − En0 Þ=ℏ�BnbðEn − En0 Þ� or

emission
�
kðBÞn0→n ¼ P

N
nb¼1 jhn0jV̂nb jnij2½JnbðEn0 − EnÞ=ℏ�

½1þ BnbðEn0 − EnÞ�
�
rates, where V̂nb is the system cou-

pling operator to the nb reservoir, JnbðEÞ is the respective
reservoir spectral density and BnbðεÞ ¼ 1=ðeε=ðkBTÞ − 1Þ is
the Bose-Einstein distribution.
At equilibrium, the two electrodes share the same

chemical potential, μL ¼ μR ¼ μ, and the same temper-
ature. Consequently, a system of fermions (interacting
or not), weakly coupled to the electrodes, obtains the

reduced density,

ρ̂S ¼
1

ZS
e−βðĤS−μN̂SÞ; ZS¼ tr

�
e−βðĤS−μN̂SÞ�: ð1Þ

The occupation probability of any system eigenstate reads
ρn ¼ ð1=ZSÞe−βðEn−μNnÞ, where states associated with the
same fermion number, Nn ¼ N, therefore belong to a sub-
space with a Boltzmann distribution ρn ¼ ðeβμN=ZSÞe−βEn .
Interestingly, Boltzmann subspaces emerge (approxi-

mately, at least) also in nonequilibrium situations. To
demonstrate this, we initially study an analytically solvable
model of a noninteracting system of fermions (setting,
∀ i; j; k; l∶wijkl ¼ 0) in the absence of coupling to bosons
(fjnbðEÞg≡ 0). In the steady state the occupation proba-
bility of the n th many-body eigenstate (occupation vector)
reads [41]

PðstÞ
n ¼

YM

m¼1

Pm;nm ;

Pm;nm ¼
X

K∈R;L

γm;K½ðfK;mÞnm þðnm− 1ÞðfK;mÞð1−nmÞ�: ð2Þ

Namely, a product of orbital occupation probabilities, with
γm;K ¼ jλm;Kj2ΓKðεmÞ=

P
K0 ∈ R;L jλm;K0 j2ΓK0 ðεmÞ. Using

graph theory [64–66] we show (see Supplemental
Material [67]) that Eq. (2) reflects the fact that the non-
equilibrium steady state satisfies an effective detailed
balance condition that emerges if one lumps together the
transitions of both reservoirs.
As a concrete example we consider a linear chain model

of M sites, with no interactions, ĤS ¼
P

M
n¼1 End̂

†
nd̂n þP

M−1
n¼1 t

�
d̂†nþ1d̂n þ d̂†nd̂nþ1

� ¼ P
M
m¼1 εmâ

†
mâm. Here d†n ¼P

M
m¼1 u

�
n;mâ

†
m creates an electron at the nth site, u is the

FIG. 1. Three scenarios in a molecular junction: equilibrium (a),(d), near equilibrium (b),(e), and far from equilibrium (c),(f).
(a)–(c) Site (green), orbital (purple), and electrode chemical potential (dotted) energies. (d)–(f) Steady-state populations (pluses). Each
state (point) is associated with a “Boltzmann line,” lnðPðstÞÞ ¼ An − βE, with β ¼ 38 1=eV. States of different total electron number are
colored differently. The model parameters in (a),(d) are E0 ¼ 0.1, t ¼ −0.05, μL ¼ μR ¼ 0.3, in (b),(e) the changes are μL ¼ 0.4,
μR ¼ 0.2, and in (c),(f) the additional change is E0 ¼ 0.16 (all in eV).
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eigenvector matrix of H, where ½H�n;n0 ¼ Enδn;n0 þ
tðδn0;nþ1 þ δn;n0þ1Þ, and the coupling to the leads is through
the terminal sites, V̂LðRÞ ≡ d†

1ðMÞ, where λm;LðRÞ ¼ u�
1ðMÞ;m.

For a uniform chain (En ≡ E0), symmetry imposes
jλm;Lj2 ¼ jλm;Rj2. Invoking additionally the wide band
limit, ΓLðεÞ ¼ ΓRðεÞ≡ Γ, we obtain γm;R ¼ γm;L ¼ 1=2.
Steady state populations of the many-body eigenstates

for this model, as presented in Fig. 1, reveal clustering into
Boltzmann subspaces. In or near equilibrium the states in
each cluster have the same total electron number, Nn ¼ N,
where the number of clusters equals M þ 1. Importantly,
the division into clusters persists even far from equilibrium.
However, the number of clusters increases, namely “large”
clusters split into smaller ones. To quantify this we define,

lnðPðstÞ
n Þ þ βEn ¼ An, and consider the distribution of

{An}. In equilibrium the group of states associated with
the same occupation number (Nn) have the same An.
Otherwise, the distribution of An within each group
broadens. The group standard deviation divided by the
typical “distance” between neighboring groups (jAn∈Nn

−
An∈Nn�1j ≅ βðμL þ μRÞ=2) defines a splitting measure,

½2=ðβðμL þ μRÞÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2

ni − hAni2
p

. In Fig. 2 this measure

is presented for the uniform chain subject to a gate
voltage, Vg. The splitting is shown to increase as the
molecular orbitals penetrate the Fermi conductance win-
dow [Figs. 1(c) and 1(f)], reaching a maximum where all
the orbital energies are inside. Interestingly, smaller sub-
groups of Boltzmann subspaces can still be identified.
The existence of Boltzmann subspaces in nonequili-

brium as observed in Figs. 1 and 2 can be readily
rationalized. When each orbital energy is “thermally iso-
lated” from the lead chemical potentials (jεm − μKj ≫ kBT,
as often holds in realistic cases), the numbers of orbitals
below, inside and above the Fermi window can be iden-
tified and marked as Mb, Mw, and Ma, respectively
(Ma þMw þMb ¼ M). Using Eq. (2) with γm;R ¼ γm;L ¼
1=2 we obtain (see Supplemental Material [67]) PðstÞ

n ¼
cn½NaðnÞ; NbðnÞ; nMbþ1; nMbþ2; ...; nMbþMw

�e−En=ðkBTÞ,
where interestingly, states associated with the same total
occupation numbers, below (

P
m∈Mb

nm ¼ NbðnÞ) and
above (

P
m∈Ma

nm ¼ NaðnÞ) the Fermi window, and the
same orbital occupation numbers inside the window
(fnmg;m∈Mw), share the same coefficient (cn) and
are therefore a Boltzmann subspace. The number of
states within each subspace depends on the different
possible arrangements of Nb and Na electrons in the
orbitals below and above the conductance window. This
number increases (and the number of distinctive subspaces
decreases), as more orbital energies are external to the
Fermi window [68], which explains the observations in
Fig. 2. This central result shows that it is possible to
associate physical meaning to the Boltzmann subspaces.
Allowing for disorder in the system (e.g., a nonuni-

form chain) or in the lead spectral densities (e.g., beyond
the wide band limit) would generally result in
fγm;Rg ≠ fγm;Lg. Importantly, while the identification of
Boltzmann subspaces is not strict in these cases, our

FIG. 2. Splitting measure of the Boltzmann subspaces studied
in Figs. 1(c) and 1(f), where E0 is replaced by a gate voltage, Vg.
The colors correspond to different electron numbers.

FIG. 3. Steady-state currents as functions of μR (for μL ¼ 0), in units of the maximal elastic current (I0). Circles: Boltzmann
subspaces-based calculations. Colored pluses: full calculations at different couplings to bosonic reservoirs with
log10ðΓB=ΓÞ∈ f3; 2; 1; 0;−1;−2;−3g (see legend) and ℏωB ¼ 0.15 eV. Inset: illustration of the model with the on-site energy values
marked in eV.

PHYSICAL REVIEW LETTERS 132, 110401 (2024)

110401-3



simulations reveal distinctive subspaces also in the pres-
ence of weak disorder or symmetry breaking (see
Supplemental Material [67]).
To demonstrate that Boltzmann subspaces are useful in

more general setups, we introduce coupling to bosonic
reservoirs. In the realm of molecular junctions, the
latter can account for molecular vibrations [69,70] or
nuclear dynamics in the leads [71]. In Fig. 3 we present
current-voltage curves calculated for a disordered chain
of M ¼ 10 sites, each coupled to a local bath with
V̂nb ¼ d†nbdnb , and an Ohmic spectral density, JnbðℏωÞ ¼
4πΓBe−ω=ωBω=ωB, where ωB and ΓB denote the cutoff
frequency and coupling energy. The calculations show that
at high bias the current through the junction increases
significantly with ΓB, reflecting the opening of additional
inelastic transport channels [61]. The results are compared
to a reduced calculation, inwhich system eigenstates having
the same electron occupation numbers are associated
with distinctive Boltzmann subspaces. The reduced calcu-
lation qualitatively reproduces the increase in current,
and even matches it quantitatively, as ΓB increases. This
can be expected, since strong coupling leads to time-scale
separation, in which equilibration with the bosonic
baths becomes much faster than charge transfer events.
Importantly, this argument applies also to systems of
interacting electrons. Adding Coulomb interactions
between neighboring sites, Ĥint ¼ U

P
M
n¼2 d

†
ndnd

†
n−1dn−1,

namely, wijkl ¼ 2U
P

M
n¼2 u

�
n;iun;ku

�
n−1;jun−1;l), the system

Hamiltonian no-longer commutes with the orbital number
operators. The eigenstates are superpositions of different
occupation vectors and the expressions for the transition
rates change accordingly. Remarkably, Boltzmann subspa-
ces can still be clearly identified (see Fig. 4) even when the
interaction induces significant changes to the steady state.
Notice that in the complementary limit of zero coupling

to bosonic reservoirs, a different choice of subspaces can be
identified, as analyzed above for U ¼ 0 and also for a
concrete model with U ≠ 0 (see Supplemental Material
[67] for graph theory analysis including Refs. [72,73]). The
identification of useful Boltzmann subspaces in the case of

intermediate interaction with bosonic reservoir remains an
open problem.
Remarkably, as ΓB increases the Boltzmann subspace-

based calculations provide a qualitative description at a
significantly smaller computational cost. For a system with
M ≫ 1 orbitals, the computational bottleneck in the exact
calculation is the solution of the homogeneous master
equation, scaling asymptotically as ∝22MM2. In contrast,
the bottleneck in the Boltzmann subspace-based calcula-
tions is the construction of the (sparse) rate matrix which
scales asymptotically only as ∝2MM, yielding an overall
exponential gain (see Supplemental Material [67]).
Additionally, the storage requirements for the steady state
vector reduces by ½2M=ðM þ 1Þ�, since the distribution
within each subspace is analytically known. These com-
putational advantages are expected to be even more
important when the transport involves molecular network
of increasing complexity [61,74–79].
In summary, the emergence of Boltzmann subspaces far

from equilibrium is useful for reducing the numerical effort
needed to describe steady states of complex open quantum
systems. In the characteristic example of molecular junc-
tions, we could identify Boltzmann subspaces even far
from equilibrium, and even in the presence of weak
disorder, interactions with bosonic reservoirs and elec-
tron-electron interactions. This phenomenon can be readily
understood in scenarios where fast equilibrium is reached
in subspaces separated by slow transitions, as encountered
when fermion transitions were coupled to molecular
vibrations. However, even in the absence of timescale
separation (e.g., in the absence of coupling to the bosonic
reservoirs) the equilibriumlike structure is shown to emerge
when two Fermion reservoirs are merged into an effective
single reservoir (see Supplemental Material [67]).

S. R. is grateful for support from the Israel Science
Foundation (Grant No. 1929/21). U. P. is grateful for
support from the Israel Science Foundation (Grant
No. 2256/22) and Binational Science Foundation (Grant
No. 2020327).

FIG. 4. Steady-state probability distributions (lnðPðstÞ
n Þ vs En) for the model presented in Fig. 3, at high bias (μR ¼ 0.4, μL ¼ 0 eV)

and strong coupling to bosonic baths [log10ðΓB=ΓÞ ¼ 3]. (a), (b), and (c) correspond to increasing Coulomb interaction, U ¼ 0, 0.1,
0.2 eV, respectively.
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