
Bounding the Amount of Entanglement from Witness Operators

Liang-Liang Sun ,1,* Xiang Zhou ,1 Armin Tavakoli,2,† Zhen-Peng Xu,3,‡ and Sixia Yu 1,4,§

1Department of Modern Physics and Hefei National Research Center for Physical Sciences at the Microscale and
School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China

2Physics Department, Lund University, Box 118, 22100 Lund, Sweden
3School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China

4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

(Received 27 April 2023; accepted 27 February 2024; published 12 March 2024)

We present an approach to estimate the operational distinguishability between an entangled state and any
separable state directly from measuring an entanglement witness. We show that this estimation also implies
bounds on a variety of other well-known entanglement quantifiers. This approach for entanglement
estimation is then extended to both the measurement-device-independent scenario and the fully device-
independent scenario, where we obtain nontrivial but suboptimal bounds. The procedure requires no
numerical optimization and is easy to compute. It offers ways for experimenters to not only detect, but also
quantify, entanglement from the standard entanglement witness procedure.
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Introduction.—Entanglement [1] is a fundamental quan-
tum resource promising advantages over the classical
resources in many information tasks ranging from quantum
computation and communication [2] to metrology [3,4].
A fundamental problem is to decide if a given state is
entangled or not. If affirmative, a natural problem is then to
quantify the amount of entanglement present in the state.
However, both these problems are typically nondetermin-
istic polynomial-time hard [5–7], and that has led to the
development of a variety of partial entanglement criteria
[8,9] and computational methods [10].
Practical entanglement detection must be reasonably

efficient, i.e., use far fewer local measurements than those
needed for state tomography while still maintaining an
adequate detection power [11–13]. The leading tool for
such purposes is entanglement witnesses (EWs) [14],
which are observable quantities that are positive for all
separable states and negative for some entangled states.
Every entangled state can be detected by some suitably
chosen entanglement witness [1], although identifying it is
not straightforward.
Assuming that a device precisely measures the observ-

ables prescribed in an EW is usually insufficient. This can
for instance be ascribed either to the realistic influence of
imperfect control [15,16] or to the presence of uncharac-
terized devices. A well-known scenario to overcome such
issues is the measurement-device-independent (MDI) sce-
nario [17,18]. EWs designed for the MDI scenario work
with uncharacterized measurement devices but require the
introduction of trusted, precisely controlled, quantum
sources. All entangled states can be detected in this
way [17]. An even stronger framework is the device-
independent (DI) scenario, in which all assumptions on

the quantum measurement devices are removed. EWs
designed for the DI scenario are commonly known as
Bell inequalities, and thus verify entanglement from
quantum nonlocality [19–21].
While the violation of EWs in these three scenarios is

sufficient to detect entanglement, a natural question is how
the magnitude of the violation can be used to quantify the
entanglement in the state. When devices are trusted,
entanglement quantification from EWs has for instance
been approached using the Legendre transform [22–26].
For MDI-EWs, entanglement quantification often comes
with costly computational methods [27–29]. In the DI
scenario, little is known about entanglement quantification.
Notable exceptions again require dedicated computational
methods that grow rapidly with the complexity of the
scenario [30].
In this Letter, we introduce a comprehensive method for

estimating entanglement, which requires no numerical
optimization and is easy to compute. The main idea is
to suitably normalize any given entanglement witness so
that its violation magnitude can be used directly to bound
the trace distance between a given entangled state and its
best separable approximation. In turn, this entanglement
quantifier can be used to bound a variety of well-known
entanglement measures. We then extend this idea from the
scenario of trusted devices to both the MDI scenario and the
DI scenario, for which the bounds are typically not tight.
The method is inherently analytical. For trusted devices and
the MDI scenario, the quantification can be easily com-
puted. In the DI scenario, the most demanding computation
needed is an upper bound on the largest quantum violation
of the considered EW. Finally, we showcase how the
approach can go further, by quantifying entanglement with
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respect to a given Schmidt number and estimating the depth
of entanglement in multipartite systems.
Trusted devices.—We focus first on the bipartite sce-

nario. When devices are trusted, consider that we are given
a standard EW in the form of a Hermitian operator W
[1,31]. By definition, we have wðρÞ≡ TrðρWÞ ≥ 0 for all
separable states andw < 0 for some entangled states, where
and henceforth we omit the state if not introducing
ambiguity. Our goal is to bound from below the distin-
guishability between ρ and any separable state in terms of a
negative w, and then use the bound to estimate other
entanglement measures. This entanglement measure cor-
responds to the smallest trace distance between ρ and any
separable state whose set is specified by Ω, that is,

EtrðρÞ ¼ min
ϱ∈Ω

Dtrðϱ; ρÞ; ð1Þ

where Dtrðϱ; ρÞ ¼ 1
2
Trjϱ − ρj is the trace distance, with

TrjAj ¼ Tr
ffiffiffiffiffiffiffiffiffi
AA†

p
. The measure Etr is motivated by having

a natural physical interpretation: it stands in one-to-one
correspondence with the largest success probability of
discriminating between the state ρ and any possible
separable state via a quantum measurement.
To this end, we observe that Dtrðρ; ϱÞ ≥ 1

2
jTrððϱ−

ρÞWÞj ≥ −ðw=2Þ if −1 ≤ W ≤ 1. Naturally, there are
many ways of satisfying the latter condition. A simple
one is to divide W by its largest modulus eigenvalue
denoted by λ≡maxfjλ�jg, where λ� are, respectively, the
largest and smallest eigenvalues of W. However, an often
better choice is to consider the following Hermitian
operator:

W 0 ¼ 2W − ðλþ þ λ−Þ1
λþ − λ−

≡ 2Wc −
ðλþ þ λ−Þ1
λþ − λ−

; ð2Þ

where the nontrivial part is denoted by 2Wc≡
½2W=ðλþ − λ−Þ�, and a smaller involved numerator ½ðλþ −
λ−Þ=2� than λ would ensure a larger lower bound on Etr,
from which Theorem 1 follows.
Theorem 1 (quantitative normalized EW).—For an EW

W that detects an entangled state ρ by a negative witness
value, it holds

EtrðρÞ ≥ −wc; ð3Þ

where wc ≡ TrðWcρÞ, and we have this theorem as
EtrðρÞ ¼ 1

2
Trjϱopt − ρj ≥ 1

2
jTr½ðϱopt − ρÞW 0�j ¼ jTr½ðϱopt −

ρÞWc�j ≥ −wc with ϱopt denoting the (closest) separable
state thus TrðWcϱoptÞ ≥ 0.
Thus, we can estimate EtrðρÞ directly from the renor-

malized entanglement witness Wc. In addition, we can use
EtrðρÞ itself to bound several other well-known entangle-
ment quantifiers.

Focusing on other distance-based entanglement mea-
sures [32], prominent examples are the smallest relative
entropy, Ere, or infidelity, Eif , between an entangled state
and a separable state [32]. Other relevant examples are
convex roof measures, such as the entanglement of for-
mation [33], ẼF, the concurrence [34], ẼC, and the geo-
metric measure of entanglement [35], ẼG. Also relevant are
the robustness, Erob, and generalized robustness, EROB, of
entanglement [36]. The definitions of these measures are
summarized in [37]. In [37] we show how all these
quantifiers of entanglement can be bounded in terms of
Etr. Hence, they can be bounded directly from the observed
value of the renormalized EW as

Ere; ẼF ≥
2

ln 2
w2
c; Eif ; ẼG ≥ w2

c;

ẼC ≥ −
ffiffiffi
2

p
wc; Erob;ROB ≥

−wc

1þ wc
: ð4Þ

Note that these relations, as well as Eq. (3), still remain if
we replace the set of separable states with other relevant
convex sets on which we can define analogous witness
operators. A particularly interesting example is the set of
states with a limited Schmidt number [40]. This would
permit the quantification of an entangled state with respect
to any other entangled state of a limited entanglement
dimension.
We exemplify the result on the well-known fidelity

witness [41–43] assuming the form W ¼ c1̂ − jϕihϕj,
where c≡maxϱ∈ΩTrðϱjϕihϕjÞ. We have λ− ¼ c − 1 and
λþ ¼ c and λþ − λ− ¼ 1, hence Wc ¼ W. The magnitude
of a negative witness value immediately gives a lower
bound on Etr. For example, let jϕi be the maximum
entangled state in d-dimensional space, namely, ρ ¼
jϕihϕj with jϕi ¼ ðPi jiii=

ffiffiffi
d

p Þ. We have c ¼ ð1=dÞ,
the related witness reads W ¼ ð1=dÞ − jϕihϕj. This leads
to the tight bound EtrðϕÞ ≥ 1 − ð1=dÞ. To investigate the
accuracy of the bounds on the other entanglement
measures, we have computed the ratios, R, between the
bounds (4) and the exact values. We find REtr

¼
RErob;ROB

¼ 1, REre;ẼF
¼½2ðd−1Þ2=d2 ln2log2d�, REif ;ẼG

¼ 1,

RẼC
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1=dÞp
. Thus, some cases are tight (when the

ratios R ¼ 1) while others are proper lower bounds. Such
an estimation immediately applies to the data from current
experiments, for example, let jϕi ¼ 1

4
ðj0000i − j1001i −

j0110i − j1111iÞ be a four-qubit cluster state, for which
c ¼ 1

2
. With a measured fidelity between jϕi and a con-

cerned ρ as TrðρjϕihϕjÞ ¼ 0.85 [44], one immediately
obtains a lower bound on ETrðρÞ ≥ 0.35.
Measurement-device-independent scenario.—Every EW

in the standard (or trusted) scenario can be converted into
an EW in the MDI scenario [17,18]. Specifically, the
original EW can always be decomposed into the form
W ¼ P

s;t αs;tτ
T
s ⊗ ωT

t , with T denoting the transpose and
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αs;t being some real coefficients for some states τs and ωt.
In the MDI scenario, two parties, Alice and Bob, receive
one share of ρ each and then individually prepare ancillary
quantum states τs and ωt, according to privately selected
classical inputs s and t, respectively. Each of them performs
an uncharacterized measurement fAag and fBbg on the
joint system-ancilla state. The correlations become
pða; bjs; tÞ ¼ Tr½ðAa ⊗ BbÞðτs ⊗ ρAB ⊗ ωtÞ�.
Note that

P
s;tαs;tpða;bjs;tÞ¼Tr½ðAa⊗BbÞðWT⊗ρABÞ�,

as shown in [18], if the first outcome in each measure-
ment corresponds to a projection onto the maximally
entangled state, the value of the MDI-EW IWðρABÞ ¼P

s;t αs;tpð1; 1js; tÞ reduces to the value of the original
EW, up to a positive constant. Hence, it follows that for any
separable state, IWðρABÞ ≥ 0, whereas IWðρABÞ < 0
implies entanglement. Thus, at the cost of introducing
trusted sources for preparing τs and ωt, entanglement can
now be certified with uncharacterized measurements.
This initial MDI protocol, collecting the correlation for

the first outcome in each side, is highly inefficient for
estimating entanglement. We slightly optimize the protocol
by collecting all pairs of outcomes ða; bÞ and calculate the
quantity

P
s;t αs;tpða; bjs; tÞ≡ wa;bðρABÞ for each of them

(the original MDI-EW IW ¼ w1;1). As one is free to label
outcomes of measurements, if there exists one pair of
outcome a, b such that wa;b < 0. One can relabel ða; bÞ as
(1,1), and entanglement is verified according to the original
MDI-EW. By summing all the wa;b < 0, we define a MDI
witness value as

I0WðρABÞ ¼
X

a;bjwa;b<0

wa;bðρABÞ:

We remark that I0W is nonlinear since the picked out wa;bs
depend on the state ρ. It is clear that, for any separable state,
wa;bðρABÞ ≥ 0 and I0WðρABÞ ¼ 0.
We now show that the witness value I0WðρABÞ can be

used to bound the entanglement measure EtrðρÞ. To this
end, we observe that, for two Hermitian matrices M
and N, TrjMjTrjNj ¼ TrjM ⊗ Nj. Since Trjϱopt − ρj ¼
ð1=TrjWTjÞTrjWT ⊗ ðϱopt − ρÞj, then we have

2TrjWTjEtrðρÞ ¼ TrjWT ⊗ ðϱopt − ρÞj
≥
X
a;b

jTr½WT ⊗ ðϱopt − ρÞ · ðAa ⊗ BbÞ�j

≥ j
X

a;bjwa;bðρÞ<0
ðwa;bðρÞ − wa;bðϱoptÞÞj

þ j
X

a;bjwa;bðρÞ≥0
ðwa;bðρÞ − wa;bðϱoptÞÞj

¼
X

a;bjwa;bðρÞ<0
2½wa;bðϱoptÞ − wa;bðρÞ�

≥ −2I0WðρÞ; ð5Þ

where ϱopt denotes the closest separable state, and in
the second equality we have used

P
a;b wa;bðρÞ ¼P

a;b wa;bðϱoptÞ ¼ TrðWTÞ, which implies thatP
a;bjwa;bðρÞ<0½wa;bðρÞ−wa;bðϱoptÞ�¼

P
a;bjwa;bðρÞ≥0½wa;bðρÞ−

wa;bðϱoptÞ�. Then we arrive at

EtrðρÞ ≥ −
I0WðρÞ
TrjWTj : ð6Þ

We consider the two-qubit Werner state ð1 − vÞ1=4þ
vjϕ−ihϕ−j with ð0 ≤ v ≤ 1Þ detected with EWW ¼ 1=2 −
jϕ−ihϕ−j where jϕ−i ¼ 1=

ffiffiffi
2

p ðj01i − j10iÞ, for which,
TrjWTj ¼ 2. Here, we employ the Bell state measure-
ment fjϕ�ihϕ�j; jψ�ihψ�gjg, where jϕ�i ¼ 1=

ffiffiffi
2

p ðj01i �
j10iÞ and jψ�i ¼ 1=

ffiffiffi
2

p ðj00i � j11iÞ. The state is
entangled when v > 1=3, then we have wa;bðρÞ ¼ ½ð1 −
3vÞ=16� < 0 when a ¼ b, otherwise, wa;bðρÞ ¼ ½ð1þ vÞ=
16� > 0. Thus we obtain an estimation EtrðρvÞ ≥ −½ð1−
3vÞ=8�, which is a half of the real value when v ¼ 1.
Estimations for other measures can be done via Eq. (4).
Device-independent scenario.—In the DI scenario, we

make no assumptions on Alice’s and Bob’s devices.
Consider n parties, called fA1; � � �Ang. Party Ai privately
selects an input si from a finite classical alphabet and
performs a measurement fMaijsig which has outcome ai.
The probability of obtaining outcomes a ¼ fa1;…; ang
when the inputs are s ¼ fs1;…; sng is denoted pðajsÞ. A
DI-EW, also known as a Bell inequality, when appropri-
ately normalized for our purposes, takes the form

TrðWβρÞ < 0; ð7Þ

where Wβ ¼ βc1 − B, and B ¼ P
a;s aa;sM̂a1js1 ⊗ � � � ⊗

M̂anjsn is Bell’s quantity, and βc is the maximum value of
Bell’s quantity over separable states and also the local-
hidden-variable bound relevant to B. We can now use the
EW Wβ to estimate DI entanglement. To this end, follow-
ing an argument that closely parallels that outlined for
trusted devices in Eqs. (2) and (3) leads to

EtrðρÞ ≥ −TrðρWcDIÞ; ð8Þ

where we have defined the renormalized EW as

WcDI ¼
Wβ

hBiþ − hBi−
; ð9Þ

where hBi� is the largest and smallest eigenvalues of the
Bell operator B when evaluated over all possible measure-
ments. In other words, it is the largest and smallest Bell
values in quantum theory. In the case that these so-called
Tsirelson bounds cannot be determined analytically, they
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can still be efficiently bounded by means of semidefinite
programming [45].
As an illustration, let us consider the paradigmatic

Clauser-Horne-Shimony-Holt inequality [46]. Its Bell oper-
ator, expressed in the two respective observables of Alice
and Bob, reads Bchsh ¼ A0B0 þ A0B1 þ A1B0 − A1B1, for
which βc ¼ 2. Our DI-EW becomes Wchsh ¼ 21 − Bchsh.
Since the Tsirelson bounds hBiþ ¼ −hBi− ¼ 2

ffiffiffi
2

p
, we

have WcDI−chsh ¼ ð1=4 ffiffiffi
2

p ÞWchsh. Hence, the estimated
entanglement is at least

EtrðρÞ ≥
hBchshiρ − 2

4
ffiffiffi
2

p : ð10Þ

This lower bound is unfortunately not tight. For example,
when hBchshiρ ¼ 2

ffiffiffi
2

p
, the lower bound is 1

2
− ð ffiffiffi

2
p

=4Þ,
instead of the true value 1

2
.

To improve our bound, we can first rewrite a DI-EW as
½ðmaxϱ∈ΩhBiϱ−hBiρÞ=ðhBiþ−hBi−Þ�. A maximal CHSH

violation, hBchshiρ ¼ 2
ffiffiffi
2

p
, is well-known to self-test anti-

communting qubitmeasurements for bothAlice andBob. For
such measurements, there are well-known uncertainty rela-
tions hA0i2 þ hA1i2 ≤ 1 and hB0i2 þ hB1i2 ≤ 1. These rela-
tions imply a bound on maxϱ∈ΩhBiϱ. Specifically, for a pro-
duct state ϱ ¼ ϱA ⊗ ϱB, one has the correlations as hAiBjiϱ¼
hAiiϱAhBjiϱB and hBchshiϱ¼

P
i;j¼0;1ð−1ÞijhAiiϱAhBjiϱB .

The uncertainty relations then imply maxϱ∈ΩhBchshiϱ ¼ffiffiffi
2

p
, which is strictly less than the classical bound βc ¼ 2

involved in Eq. (10), thus improving the lower bound in
Eq. (10) from 1

2
− ð ffiffiffi

2
p

=4Þ to 1
4
.

Estimating entanglement of k-depth.—We apply our
approach also to quantify the depth of entanglement in
multipartite systems. A multipartite pure state jΨi is said to
be k-producible if the subsystems can be partitioned into m
pairwise disjoint and nonempty subsets, denoted by
fA1; � � �Amg, such that state jΨi can be written as a
product as jψ1iA1

⊗ � � � ⊗ jψmiAm
and each set Ai con-

tains at k elements. Similarly, a mixed state is called
k-producible if it can be decomposed into a mixture of
k-producible pure states. If a state is not k-producible, it is
said that its entanglement depth is at least kþ 1. We write
WPk

for a witness of k-depth entanglement; it is an
observable such that the expectation value wc;Pk

≡
TrðWPk

ρÞ ≥ 0. If ρ is k-producible state and wc;Pk
< 0

for some state with entanglement depth more than k.
LetΩPk

be the set of all states with entanglement depth at
most k. In analogy with the bipartite case, we consider the
distinguishability between a given state ρ, and any state in
ΩPk

, namely

Etr;Pk
ðρÞ≡ min

ϱ∈ΩPk

Dtrðρ; ϱÞ ≥ −wc;Pk
; ð11Þ

which can be estimated immediately with some known
multipartite entanglement witnesses. Two cases are pro-
vided in what follows.
We exemplify this for a standard entanglement

witness tailored for a noisy tripartite W state ρ ¼ ðv1=8Þ þ
ð1 − vÞjΨihΨj where jΨi ¼ ð1= ffiffiffi

3
p Þðj1; 0; 0i þ j0; 1; 0iþ

j0; 0; 1iÞ. Standard multipartite EWs can be constructed by
solving the so-called multipartite separability eigen-
value equations [47,48]. In Ref. [47] examples of EWs of
k-producible entanglement for this state are given as
WP1

¼ 4
9
· 1 − jΨihΨj, andWP2

¼ 2
3
· 1 − jΨihΨj. For both

of them, λþ − λ− ¼ 1. We have wc;P1
¼ 4

9
− ð7v=8Þ and

wc;P2
¼ 2

3
− ð7v=8Þ. Entanglement is certified when v ≥

ð40=63Þ as wc;P1
< 0, and entanglement of depth three is

certified when v > ð8=21Þ. From our approach, we get a
also quantitative statement. For instance when v ¼ 1, we
have Etr;P1

ðρÞ ≥ ð31=72Þ and Etr;P2
ðρÞ ≥ ð5=24Þ.

Next, we consider the multipartite scenario in a device-
independent setting. Multipartite DI-EWs are designed by
exploiting the fact that quantum state with a deeper
entanglement depth can violate some Bell’s inequalities
to a larger extent [19,21,49–52]. One typical such Bell’s
inequality is the Svetlichny inequality that reads [49,53]

BðnÞ
S ¼ 2−

n
2

X
a;s

ð−1Þaþbs
2
cM̂a1js1 ⊗ � � � ⊗ M̂anjsn ; ð12Þ

where s ¼ P
i si and a ¼ P

i ai are the sum of measure-
ment setting si ∈ f0; 1g and outcome ai ∈ f0; 1g. The

maximum expectation value of BðnÞ
S with respect to the

set of k-producible states is [54] βk ≡ 2ðn−2b⌈n=k⌉=2cÞ=2, and
the maximum and minimum values for an arbitrary

quantum state are hBðnÞ
S iþ ¼ −hBðnÞ

S i− ¼ 2ðn−1Þ=2. Thus,
the renormalized multipartite DI-EWof k-producible states
reads

WðnÞ
cDI;Pk

≔
Wn

DI;Pk

2ðnþ1Þ=2 ; Wn
DI;Pk

≔ βk · 1 − BðnÞ
S ; ð13Þ

from which we have the quantitative estimation

EðnÞ
tr;Pk

≥ −wðnÞ
cDI;Pk

¼ −TrðρWðnÞ
cDI;Pk

Þ: ð14Þ

As a simple illustration of Eq. (14), consider the correlation

scoring hBðnÞ
S i ¼ hBðnÞ

S iþ, which is attained by the GHZ
state. The lower bound for the entanglement quantifier with
respect to states of depth more than k becomes

EðnÞ
tr;Pk

≥
1

2

�
1 − 2−2b

⌈n=k⌉
2

c
�
: ð15Þ

This lower bound asymptotically tends to the exact value
for the GHZ state as n=k → ∞ and tends to zero
as n=k → 1.
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In conclusion, we have provided a simple method to
estimate entanglement in the standard, MDI and DI
scenarios by renormalizing witness operators. The method
is tailored to the operational distinguishability measure, but
it also yields nontrivial bounds on many of the well-known
entanglement measures used in quantum information. This
permits an experimenter to not only detect different forms
of entanglement but also to quantify it, without requiring
any additional measurements than those used in a standard
witness-based detection scheme. Hence, this may be seen
as an enhanced data analysis, which is also practically
straightforward to use since our procedure requires essen-
tially no optimization but only simple analytical expres-
sions. Finally, we note that our approach might be
interesting to consider also in the context of estimating
quantum properties in other scenarios, such as steering,
quantum coherence, and entanglement-assisted quantum
communication.
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