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Information is instrumental in our understanding of thermodynamics. Their interplay has been studied
through completely degenerate Hamiltonians whereby the informational contributions to thermodynamic
transformations can be isolated. In this setting, all states other than the maximally mixed state are
considered to be in informational nonequilibrium. An important yet still open question is how to
characterize the ability of quantum dynamics to preserve informational nonequilibrium. Here, the
dynamical resource theory of informational nonequilibrium preservability is introduced to begin providing
an answer to this question. A characterization of the allowed operations is given for qubit channels and the
n-dimensional Weyl-covariant channels—a physically relevant subset of the general channels. An
operational interpretation of a state discrimination game with Bell state measurements is given. Finally,
an explicit link between a channel’s classical capacity and its ability to preserve informational
nonequilibrium is made.
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Introduction.—Resources are precious. Their value
arises from their limitation, incentivizing them to be
efficiently utilized and maintained. Formally, an object is
considered to be a resource if it can be used by some agent
to overcome the physical constraints of a system. A
resource therefore allows an agent to obtain an otherwise
impossible advantage.
Within the quantum regime, the study of the limitations

experienced by such an agent is the central aim of quantum
resource theories. They provide a rigorous mathematical
framework with which the ability of quantum objects to
supply an operational advantage—subject to some physical
constraints—can be compared [1]. Thus far, they have
proved a fruitful way to approach problems concerning a
number of different quantum phenomena, with resource
theories of entanglement [2], athermality [3–5], and meas-
urement, [6] to name a few.
Initially, static resource theories (SRTs) were the sole

focus. In such SRTs, the primary objects in question are
quantum states, and the resource is some property of these
states. There is now an effort to expand resource theories
beyond states to the dynamical regime [7–16], with the aim
to assess and compare the ability of different quantum

operations to be resourceful, therefore providing some
advantage. Within these dynamical resource theories
(DRTs), the resourceful objects are quantum operations
with some property of the quantum operation being
considered a resource.
One such important property is the ability of operations

to preserve the static resource present in the state upon
which they act. These “resource preservability theories,”
introduced in [10], are built upon SRTs and apply structure
to their set of allowed operations. In particular, not all
allowed operations are equal. Some operations will com-
pletely preserve the resource, while others will completely
destroy it. How well an allowed operation preserves the
static resource can itself be considered a type of dynamic
resource, and this is the focus of such DRTs.
Note that while intimately connected, the resource

considered in the DRT and underlying SRT are fundamen-
tally different and apply to different classes of objects—
quantum channels and quantum states, respectively.
The desire for resource preservation arises naturally in

any resource theory. Specifically, in the context of thermo-
dynamics, it arises due to nonequilibrium states being
considered a resource. For a given state, both its energy and
the information an agent has about it will determine how
resourceful it is [17]. The contribution arising from
information can be studied in isolation by considering
trivial Hamiltonians, where all energy levels are degenerate.
In this regime, any thermodynamic transformation that
occurs must arise solely from an information theoretic
origin, given there can be no change in energy. The
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maximally mixed state is the thermal state in this picture,
and all other states are considered to be in “informational
nonequilibrium.”An understanding of this specific case can
then be used to infer results about the general case, in which
energetic considerations are necessary.
The study of informational nonequilibrium has been

succinctly formalized through the resource theory of infor-
mational nonequilibrium [18–20]. Such SRTs often ques-
tion the existence of transformations between states without
any concern for the details of said transformations. This
initially led to our understanding of thermodynamics having
little to do with dynamics [5]; however, insight has since
been gained into the dynamical aspects of thermodynamic
resource theories. For example, the largest set of feasible
dynamics has been investigated [21], and their consistency
with the laws of thermodynamics [22] and practically
relevant constraints assessed [23,24]; their behavior in the
macroscopic limit has been considered [25], and their analog
in the continuous variable regime studied [26,27]. Despite
this, there has been no insight into how to describe the ability
of a given dynamics to preserve informational nonequili-
brium. Understanding what properties prevent thermaliza-
tion will not only enrich our foundational understanding of
thermodynamics but also shed further light on the role of
thermodynamics in information processing and transmis-
sion. In addition, most quantum dynamics used in practical
applications, such as quantum computation [28] and quan-
tummemories [29], benefit from this lack of thermalization,
which is a prevalent type of decoherence. An improved
understanding of these dynamics could therefore further our
control over these systems.
Within this Letter, we define and characterize the

dynamical resource theory of informational nonequilibrium
preservability to begin addressing this question. The
informational nonequilibrium of a state will henceforth
be referred to as the static resource to distinguish it from the
dynamic resource.
The resource theory of informational nonequilibrium.—

The set of free states of a resource theory are those states
that contain no resource. In the SRT of informational
nonequilibrium, the only free state is the maximally mixed
state, I=dS. Hence, the set of free states is fϒS ≔ IS=dSg,
where the subscript labels the subsystem and d is the
dimension.
All dynamics considered are quantum channels: com-

pletely positive trace-preserving linear maps. In a resource
theory, dynamics is captured by the allowed operations.
These are resource nongenerating physical manipulations
that can be applied arbitrarily many times at no cost. Within
the resource theory of informational nonequilibrium, these
are taken to be the set of “noisy operations,” Ost, given by

DðρSÞ ¼ TrE0 ½USEðρS ⊗ ϒEÞU†
SE�∈Ost; ð1Þ

where USE is a unitary operator on a joint system SE [30].
Physically, this means coupling the system S with a bath E

in informational equilibrium, evolving the joint system
under a global unitary, and then discarding some part of the
joint system and environment, E0. The resource theory of
informational nonequilibrium will be referred to as Rst.
The existence of a noisy operation between two states ρ

and σ is equivalent to the existence of a “unital” channel,
N , such that σ ¼ N ðρÞ (a unital channel leaves the identity
invariant) [19]. If ρ and σ are of equal dimension, this unital
channel is a “mixed unitary channel.”
The dynamical resource theory of informational

nonequilibrium preservability.—Any SRT induces a DRT
of static resource preservability [10]. The DRT of informa-
tional nonequilibrium is built upon Rst. It aims to apply
structure to the set of noisy operations based on the
channel’s ability to preserve nonequilibrium. Formally, a
noisy operation N ∈Ost is considered resourceful if it can
output some nonequilibrium state, N ðρÞ ≠ ϒS for some ρ.
The free objects of this resource theory are those channels
that remove all of the resource from states upon which they
act. In this case, since the free set of the SRT is a single
state, the only free channel in the DRT is the state
preparation channel of ϒS, Λð·Þ ≔ Trð·ÞϒS.
Allowed operations of a dynamical resource theory are

“superchannels”—linear mappings of quantum channels to
quantum channels—that can only decrease the resource
content of the channel [31]. Superchannels can be realized
in the lab with a preprocessing and postprocessing channel
connected to a memory system. Using this form and the
structure of resource nongenerating superchannels pre-
sented in [10], superchannels in the free set, Odyn, have
the following form:

ΠðN Þ ¼
X

κ

pκEκ ∘N ∘Pκ ∈Odyn; ð2Þ

where shared randomness, described by the random var-
iable κ and a probability distribution pκ, is permitted
between the preprocessing and postprocessing noisy oper-
ations Pκ, Eκ. It can be verified that these superchannels
map noisy operations to noisy operations, with Λ only
being mapped to itself. Further details on the allowed
superchannels are given in Supplemental Material A [32].
The physical reasoning behind this set of superchannels

being allowed is that all parts come from the allowed
operations ofRst. Given that noisy operations only increase
informational nonequilibrium, the output states of ΠðN Þ
cannot contain any more static resource than the output
states of N . Superchannels in Odyn are therefore dynamic-
resource nonincreasing, as ΠðN Þ cannot preserve more
informational nonequilibrium present in any state upon
which it acts than N . The dynamical resource theory of
informational nonequilibrium preservability will be
referred to as Rdyn.
All resource theories aim to quantify how resourceful a

given object is. Since allowed operations cannot generate
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any resource, we can understand this by studying which
objects can be converted into each other. In Rst, this
characterization takes the following form: given two
quantum states ρ and σ, does there exist a noisy operation
mapping ρ → σ? Answering this establishes a preorder on
the set of all states based on the existence of a noisy
operation between them. This preorder then allows the
state’s resource content to be compared. For the SRT, this
convertibility question has been answered and is simple,
being captured entirely by the mathematical notion of
majorization [19]. Answering it for Rdyn is the aim of this
Letter. This will establish a preorder on the set of channels
Ost based on the existence of an allowed superchannel
between them. Given these are resource nonincreasing, if
there exists an allowed superchannel mapping N → M,
where M;N ∈Ost, it will be known that MðρÞ will be
closer toϒS thenN ðρÞ for all ρ. In other words,Mwill not
preserve informational nonequilibrium better than N .
Characterizing allowed superchannels by a Choi-state

representation.—To answer the convertibility question, the
Choi-Jamiołkowski isomorphism will be employed. This is
a linear mapping between a quantum channel N and a
bipartite quantum state JN , given by

JN ¼ ðI ⊗ N ÞðjΦihΦjÞ; ð3Þ

where jΦi ≔ ð1= ffiffiffi
d

p ÞPi jiii. Specifically, as proven in
Supplemental Material A [32], if there exists an allowed
operation Π∈Odyn, so that M ¼ ΠðN Þ in the form of
Eq. (2), for two noisy operations M and N , then the
corresponding Choi states are related as

JM ¼
X

κ

pκðPκ ⊗ EκÞðJN Þ: ð4Þ

In what follows, the dynamics of a quantum system of a
constant finite dimension are considered. In this case, how
far a state is from informational nonequilibrium is equiv-
alent to asking how pure that state is [19]; see the
Appendix A for more details. As mentioned above, under
this restriction Ost ¼ UM, where UM is the set of mixed
unitary channels.
Characterizing allowed operations for qubit systems.—

Initially, qubit channels are focused on, such that our
resource theory concerns qubit mixed unitary channels.
A characterization ofRdyn looks to answer the following

question: given two channelsM;N ∈Ost, does there exist
an allowed operation Π∈Odyn such that M ¼ ΠðN Þ?
Using the form of allowed operations given in Eq. (4), the
above question equivalently asks if there exists some
convex combination of channels Pκ; Eκ ∈Ost that act on
the subsystems of JN respectively to map JN → JM. It
is shown through the following result that this depends only
upon the eigenvalues of the corresponding Choi states. In

what follows, μ and λ are vectors of eigenvalues of the Choi
states JM and JN , respectively.
Result 1: For every given M;N ∈Ost, the following

statements are equivalent: (1) M ¼ ΠðN Þ for some
allowed operation Π∈Odyn, and (2) μ ¼ Dλ, where D ¼P

n;m pnmσ
n
x ⊗ σmx with pnm the elements of a probability

vector and σx is the Pauli X.
Result 1 states that an allowed operation of Rdyn exists

betweenN andM if and only if the vector of eigenvalues,
μ, of the Choi state of the channel M is in the convex hull
of local permutations of the vector of eigenvalues, λ, of the
Choi state of the channel N . This is reminiscent of the
analogous result for Rst [19] since majorization is equiv-
alent to the existence of a doubly stochastic matrix
mapping the eigenvalues of ρ and σ [38]. Here, in contrast,
we do not have all doubly stochastic matrices but only a
subset, the local permutations. A sketch of the proof
of Result 1 is provided in the Appendix B below,
and a complete derivation can be found in Supplemental
Material B [32].
Mathematically, the question of the existence of an

allowed operation between two channels can now be
simplified to a convex optimization problem that can be
easily solved on conventional computing hardware.
Physically, this allows a comparison of the ability of the
allowed operations of Rst to preserve purity.
As an application of Result 1, we consider the existence

of an allowed operation between the depolarizing,Dpol
s , and

dephasing, Dph
q , channels, parametrized by s and q,

respectively (if s, q ¼ 1 they are the identity channel; if
s, q ¼ 0 they are the completely depolarizing or dephasing
channel). It is found that there exists an allowed operation
of Rdyn mapping Dpol

s → Dpol
s0 if and only if s0 ≤ s, and

similarly, Dph
q → Dph

q0 if and only if q0 ≤ q. This confirms
the obvious conclusion that increasing the probability of
depolarizing or dephasing decreases the amount of pre-
served purity. In addition, no allowed operation exists that
maps Dpol

s → Dph
q except in the trivial case (s ¼ 1), as

expected. However, there does exist an allowed operation
mapping Dph

q → Dpol
s if and only if s ≤ q=ð2 − qÞ. See

Supplemental Material B [32] for the details.
A complete set of monotones.—A monotone of a re-

source theory is a function Mð·Þ such that M½N ðρÞ� ≤
MðρÞ, where N ∈Ost. Although, it may be the case that
MðσÞ ≤ MðρÞ even if no allowed operation exists between
ρ and σ. A complete set of monotones, fMig, does,
however, provide an alternative to the convertibility ques-
tion, with an allowed operation existing such that ρ → σ if
and only if MiðσÞ ≤ MiðρÞ ∀ i. The characterization given
in Result 1 admits a geometrical interpretation of an
allowed operation through which a complete set of monot-
ones can be found.
The set of local permutations of λ is L ¼

fPiλ∶ ∀ Pi ∈Pg, where P is the set of local qubit
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permutations. Result 1 can be rephrased, stating that a
matrix D exists, such that μ ¼ Dλ, if μ is in the convex hull
of vectors in L. Each element of L lives in a three-
dimensional subspace of R4 due to normalization. The
vectors L within this lower dimensional subspace are given
by L̃. Geometrically, the elements of L̃ form a simplex, as
depicted in Fig. 1. Each point represents a qubit unital
channel diagonal in the Bell basis. The points of the outer
simplex are the identity channel and channels that are
equivalent to the identity up to a Pauli operator. From these
channels, it is possible to reach all other channels under
allowed operations, as their convex hull is the whole space.
The center of the simplex, Λ̃, is the free state preparation
channel, Λ. This channel can be reached by any channel
under allowed operations.
Using this geometrical representation, a complete set of

monotones can readily be identified. In what follows, we
consider all vectors in L̃ to be linearly independent, which
is the general case [39]. For completeness, all cases are
considered in Supplemental Material C [32].
Result 2: There exists a set of d2S ¼ 4 linear inequalities

that are a complete set of monotones ofRdyn if L̃ is a set of
linearly independent vectors.
With the vectors in L̃ being linearly independent, their

convex hull forms a tetrahedron in R3. If the three-
dimensional representation of the channel μ, given by μ̃,

lies inside this tetrahedron, it is then in the convex hull of
the vectors in L̃. This is equivalent to μ being in the convex
hull of the vectors in L and hence an allowed operation
λ → μ existing.
Each monotone then checks on what side of the planes

that encompass each of the four faces of the tetrahedron
μ̃ lies on. If for all four planes μ̃ lies on the same side as
Λ̃, it must be inside the tetrahedron, and an allowed
operation exists.
Characterizing allowed operations for arbitrary finite

dimensional systems.—Result 1 is extended to higher
dimensional systems, such that dS ¼ n, in the important
specialized case that Ost is the set of “Weyl-covariant
channels,” UW , where UW ⊊ UM. A channel N is Weyl-
covariant if N ðWijρW

†
ijÞ ¼ WijN ðρÞW†

ij ∀ i; j; ρ, where
Wij are the discrete Weyl operators [40]. These are a
physically relevant set of channels given that they contain
the completely depolarizing, completely dephasing, and
partial thermalization channels. More detail on these chan-
nels can be found in [40] and Supplemental Material D [32].
Our allowed operations now become a preprocessing and
postprocessing Weyl-covariant channel with shared ran-
domness between them, given by the setOdyn

W ⊊ Odyn. The

DRT considered for dS ¼ n will be referred to as Rdyn
n . In

this picture, we get the following result.
Result 3: For every given M;N ∈Ost ¼ UW , the

following statements are equivalent: (1) M ¼ ΠðN Þ for

some allowed operation Π∈Odyn
W , and (2) μ ¼ D0λ, where

D0 is a convex combination of local “cyclic” permutation
matrices.
A sketch of the proof of Result 3 can be found in

Appendix C below, and a complete derivation can be found
in Supplemental Material D [32].
Following the same logic as in the qubit case, a complete

set of monotones can again be found.
Result 4: There exists a set of d2S inequalities that are a

complete set of monotones of Rdyn
n if L̃ is a set of linearly

independent vectors.
Characterizing allowed operations via state discrimi-

nation.—The complete set of monotones of Rdyn and Rdyn
n

can be used to create an operational interpretation of the
preorder established on the set of noisy operations.
Result 5: LetN ∈Ost be given. Then there exists a set of

d2S many bipartite states fρijg making the following two
statements equivalent: (1) M ¼ ΠðN Þ for some Π∈Odyn,
and (2) for every i, j we have

hΦijjðI ⊗ N ÞðρijÞjΦiji ≥ hΦijjðI ⊗ MÞðρijÞjΦiji: ð5Þ

Here, jΦiji is a state from the Bell basis and L̃must be a set
of linearly independent vectors.
This can be interpreted as a state discrimination task:

firstly, a referee distributes half of the bipartite state ρij

FIG. 1. A simplex in R3 where each point represents the Choi
state of a qubit unital channel that is diagonal in the Bell basis. Iij,
the extreme points of the outer simplex, are the identity channel
and channels that are equivalent to the identity channel up to a
Pauli operator. The set of vectors L̃ is plotted as points, l̃ij, where
each point represents a local permutation of λ. The convex hull of
these vectors is shaded red with the free channel, given by Λ̃, at
the center. μ̃ sits within this convex hull, and hence, an allowed
operation exists between the channel λ and μ. ν̃ sits outside, and
hence, no allowed operation exists between the channel λ and ν.
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to Alice and half to Bob. Alice then sends her half to Bob
via the channel N or M, and Bob makes a Bell-state
measurement. Bob succeeds if he gets the measurement
outcome associated with jΦiji for the state ρij. If for all
states in the set Bob’s success probability is at least as high
when Alice applies N as when Alice applies M, an
allowed operation exists between N and M. Here, the
individual probabilities of successful discrimination need to
be considered, not just the average success probability, as is
common in other state discrimination tasks [41].
This result allows the preorder to be experimentally

investigated. Each state, ρij, is constructed in a similar
method to the complete set of monotones. Interestingly,
there is some freedom in how this operational interpretation
is formed. This is detailed with a derivation in Supplemental
Material E [32].
Classical capacity quantifies informational nonequ-

ilibrium preservability.—In addition to finding complete
sets of monotones, it is important to find physically
motivated monotones. The “Holevo capacity”—a lower
bound on the classical capacity of a quantum channel
[40,42–46]—is one such physically relevant monotone of
both Rdyn and Rdyn

n .
If there exists a Π∈Odyn such that M ¼ ΠðN Þ, where

M;N ∈Ost, then χðN Þ ≥ χðMÞ where χð·Þ is the Holevo
capacity. See Supplemental Material E [32] for a full
derivation. Therefore, Rdyn can be employed to compare
the classical communication abilities of unital quantum
channels in settings where nonequilibrium can only
increase. See Appendix D below for details of how this
relates to the dynamical resource theory of communication
[47], and see Supplemental Material G [32] for more details
on monotones.
Conclusion.—Here, the dynamical resource theory of

informational nonequilibrium preservability has been char-
acterized for both qubit mixed unitary channels and Weyl-
covariant channels. Through the presented framework, the
ability of two allowed operations of Rst to preserve the
purity of input states can be compared for all states in
the space of states. This characterization acts as a proof of
principle for resource preservability theories and suggests
that others could be developed. The clear and immediate
next step would be to extend these results to the resource
theory of thermodynamics. An understanding of the ability
of thermal operations [4] to preserve nonequilibrium could
further our knowledge of the dynamical aspects of quantum
thermodynamics. Such understanding could also be uti-
lized, for example, in the study of efficient thermal
processes. Moreover, a characterization of the DRT of
information nonequilibrium for channels with differing
input and output dimensions would be another interesting
extension of the above results. Additionally, resource
preservability theories could also be built upon other
successful SRTs of a more pragmatic nature. For instance,
the set of local operations and classical communication

could be studied and their ability to preserve entanglement
quantified.
Moreover, a link between the ability of a channel

to preserve information nonequilibrium and classical capac-
ity—a natural measure for classical communication—has
been made. Further effort should be made to discover other
physically relevantmonotones ofRdyn in the hope of finding
additional areas in which it is applicable.

B. S. acknowledges support from UK EPSRC (EP/
SO23607/1). P. S. and C.-Y. H. acknowledge support from
a Royal Society URF (NFQI). C.-Y. H. also acknowledges
support from the ERCAdvanced Grant (FLQuant). P. S. is a
CIFAR Azrieli Global Scholar in the Quantum Information
Science Programme. Figure 1 was made with the help
of [48].

Appendix A: Informational nonequilibrium and purity.—
While similar, the resource theory of informational
nonequilibrium and the resource theory of purity differ
in what exactly they consider a resource. Two states that
are identical on their support but embedded in different
dimensional Hilbert spaces will have the same amount
of resource in the resource theory of purity but a
differing amount of resource in the resource theory of
informational nonequilibrium. In a Hilbert space of fixed
dimension, these resource theories become alternative
interpretations of the same physics. Where context
permits, informational nonequilibrium will be referred to
as purity in this Letter. This resource theory could,
therefore, also be referred to as the dynamical resource
theory of purity preservability.

Appendix B: Result 1.—Here, we provide a sketch of
the proof of Result 1. A complete derivation can be
found in Supplemental Material B [32].
Proof.—Firstly, we prove that statement 1 implies state-

ment 2. We simplify the form of the allowed operations
through the following lemma.
Lemma 1.—The Choi states of qubit unital channels can

always be diagonalized in the Bell basis (maximally
entangled basis) under local unitaries.
Given all unitary channels are inOst, there always exists

an allowed operation that can diagonalizeJN . The action of
all qubit unital channels can, therefore, be captured through
only the eigenvalues of their Choi state. Equation (4)
can now be rephrased as μ ¼ Bλ, where λ; μ∈R4 are
vectors of eigenvalues of JN , JM respectively, and B is
in the convex hull of matrices with elements Bnm;kl ¼
jhΦkljU ⊗ VjΦnmij2 for some general unitaries U, V. The
Bell basis states are given by jΦiji ¼ ðI ⊗ WijÞjΦ00i, where
Wij is a discrete Weyl operator and jΦ00i ≔ jΦi (see
Ref. [40] and Supplemental Material A [32] for details on
Weyl operators). Matrices of this type are a subset of the
unistochastic matrices [49]—we coin this subset “the
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product-Bell unistochastic matrices.” The following lemma
is now employed.
Lemma 2.—Product-Bell unistochastic matrices are a

convex combination of local permutation matrices.
The proof of this direction is then completed by noting

that a convex combination of product-Bell unistochastic
matrices remains a convex combination of local permuta-
tion matrices.
To show statement 1 implies statement 2, consider the

channels Ñ ;M̃, whose Choi states are diagonalized in the
given Bell basis with the same eigenvalues as JN ;
JM. This is guaranteed by Lemma 1. When statement 2
holds, one can write M̃ ¼ αÑ þ ð1 − αÞÑ½σxð·Þσx�, where
α ¼ P

n¼m pnm, meaning there is an allowed operation
converting N into M, completing the proof.

Appendix C: Result 3.—Here, we provide a sketch of
the proof of Result 3. A complete derivation can be
found in Supplemental Material D [32].
Proof.—The Choi states of Weyl-covariant channels are

diagonal in the Bell basis, and Choi states that are diagonal
in the Bell basis correspond to Weyl-covariant channels.
The physical meaning of all the Choi states of qubit unital
channels being diagonalizable under local unitaries (see
Lemma 1 in the above appendix) can now be seen—all
qubit unital channels are equal to a Weyl-covariant channel
up to a preprocessing and postprocessing unitary. (This
result was also recently found in [50]; see Supplemental
Material A [32] for our proof.) From the diagonalization of
the Choi state, the proof of Result 3 is similar to that of
Result 1 seen in Appendix B above. The difference arises
from B now being in the convex hull of matrices with
elements Bnm;kl ¼ jhΦkljWab ⊗ WcdjΦnmij2, where Wab

and Wcd are general discrete Weyl operators. This restricts
the set of permutations to be only the set of local cyclic
permutations. A complete derivation can be found in
Supplemental Material D [32].

Appendix D: Classical capacity quantifying infor-
mational nonequilibrium preservability.—The dynamical
resource theory of classical communication [47] has all
state-preparation channels as the set of channels with no
resource (the free set). This is due to these channels not
being able to communicate any information. In the
resource theory presented here, we have an additional
thermodynamic constraint that the channels cannot drive
the system out of equilibrium. This suggests that,
conceptually, informational nonequilibrium preservability
can be viewed as the ability to transmit classical
information [47,51] subject to additional thermodynamic
constraints.
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