
Solvable Model of Quantum-Darwinism-Encoding Transitions
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We propose a solvable model of quantum Darwinism to encoding transitions—abrupt changes in how
quantum information spreads in a many-body system under unitary dynamics. We consider a random
Clifford circuit on an expanding tree, whose input qubit is entangled with a reference. The model has a
quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from
an arbitrarily small fraction of the output qubits, and an encoding phase where such retrieval is impossible.
The two phases are separated by a mixed phase and two continuous transitions. We compare the exact result
to a two-replica calculation. The latter yields a similar “annealed” phase diagram, which applies also to a
model with Haar random unitaries. We relate our approach to measurement-induced phase transitions
(MIPTs), by solving a modified model where an environment eavesdrops on an encoding system. It has a
sharp MIPT only with full access to the environment.
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Introduction.—A pillar of modern quantum statistical
mechanics [1–3] is the idea that unitary dynamics in a
many-body system generically scrambles local quantum
information. Eventually, it becomes highly nonlocal and
impossible to retrieve, unless the observer has access to
more than half of the system: The information has been
encoded [4–7]. Information scrambling and encoding have
far-reaching consequences, for example, on the quantum
physics of black holes [8–13].
Meanwhile, a basic premise of quantum Darwinism

(QD) [14–19] is that a macroscopic environment, e.g., a
measurement apparatus, duplicates some classical infor-
mation. Hence, the latter becomes retrievable in multiple
small fractions of the environment. It is important to view
the environment itself as a many-body quantum system.
Indeed, the theory of QD aims to deduce the properties of
the classical world from the core principles of quantum
physics. According to QD, the duplication of information
underlies the emergence of classical objectivity [20–23]:
Being objective is being known to many.
Quantum Darwinism and encoding are distinct ways of

many-body quantum information spreading. Both behav-
iors emerge from the microscopic laws of quantum
mechanics, just like both ferro- and paramagnetism can
emerge from the Ising model. Ferro- and paramagnetism
are distinct phases of matter, separated by a continuous
phase transition. Can we view QD and encoding as stable
phases of quantum information, and are they separated by
some transition [24,25]? In this Letter, we propose a
solvable model of sharp phase transitions from QD to
encoding. Our model is a random Clifford unitary circuit on
an expanding tree, whose root forms a maximally entangled

pair with a reference qubit [Fig. 1(a)]. It has one parameter,
analog of the temperature in the Ising model. We then ask
whether it is possible to retrieve information about the
reference bit from a small fraction f < 1=2 of the tree’s
leaves (output qubits). We determine exactly the model’s

FIG. 1. (a) Model for quantum-Darwinism-encoding transitions
on an expanding tree with t ¼ 3 generations. (b) Information on
R is accessible to a small subsystem (squares) in the QD phase
and inaccessible in the encoding phase. In the mixed phase, the
information is accessible in a fraction of random realizations.
(c) A tree model of an environment eavesdropping on an
encoding dynamics. (d) A transition is possible only with full
access to the environment f ¼ 1.
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phase diagram [Fig. 1(b)]. It has a stable QD (encoding,
respectively) phase, where one may (may not, respectively)
extract a classical bit of information about the reference bit.
Unlike the Ising model, the encoding and QD phases are
separated by an intermediate mixed phase and two con-
tinuous transitions.
Another inspiration for this work is the measurement-

induced phase transitions (MIPTs) [26–37], which are also
“quantum information transitions.” In the standard setup, a
generic many-body unitary evolution is continually inter-
rupted by local measurements. By tuning the measurement
rate, one obtains a transition between a phase with volume-
law entanglement entropy and one with area law. The
MIPTs concern entanglement properties of random states
drawn from the Born rule and are delicate to study and
observe [38–40]. Here, we consider a “Darwinian” MIPT
setup; see Figs. 1(c) and 1(d). We amend our model in the
encoding phase with eavesdropping qubits [41] and ask
whether they can extract a classical bit of information about
the reference [34,42–45]. We show that a sharp transition
occurs at a critical rate of eavesdropping, if and only if one
has access to all the eavesdropping bits.
Model for QD-encoding transition.—Consider a max-

imally entangled pair ðj0iRj0iA þ j1iRj1iAÞ=
ffiffiffi
2

p
between a

reference qubit R that will be kept intact and the qubit A
that will be the root of an expanding binary tree unitary
circuit; see Fig. 1. The edges of the tree represent the world
lines of the qubits constituting a growing system [46,47].
At each branching, we recruit a new qubit with state j0i and
apply a CNOT gate to it and the input qubit:

ð1Þ

Equivalently, the branching acts on the input qubit as an
isometry

P
i¼0;1 jiiihij. In addition, we apply a random one-

body Clifford unitary (drawn uniformly) to each edge of the
tree with probability p, which is the parameter that
interpolates between the QD (p ¼ 0) and encoding limits
(p ¼ 1). After t time steps, there are N ¼ 2t output qubits,
from which we draw the subsystem F randomly: Each
output qubit belongs to F with probability f. We denote by
U the resulting unitary from A and N − 1 recruits to the N
output qubits. By construction, U is a Clifford unitary,
which can be efficiently simulated [48,49]. Here, we can
analyze the knowledge of F on R analytically [50].
For this, we recall the defining property of a Clifford

unitary: It transforms any Pauli operator to a single
product of Paulis, known as a Pauli string. For example,
a one-body Clifford unitary permutes X, Y, and Z, and
choosing a random one-body Clifford amounts to picking
one among the six permutations (here and below, a Pauli
string will be always considered modulo a phase �1, �i).
Now, let us fix a realization of our model and consider a

Pauli string P acting on the subsystem F. By definition, our
Clifford unitary U will pull it back to Q ¼ U†PU, a Pauli
string acting on A and the N − 1 recruits. We then contract
it with the recruit states ðj0ih0jÞ⊗N−1 to obtain a Pauli
operatorOA acting on A. There are two possibilities: (i) IfQ
contains an X or Y acting on some recruit bit, OA vanishes.
(ii) Otherwise, OA ∈ fI; Z; X; Yg is identity or a Pauli.
Repeating this for all Pauli strings acting on F, we

construct a set s ⊂ fI; X; Y; Zg of all the nonzero operators
OA thus obtained. It is not hard to see that s is a subgroup of
fI; X; Y; Zg (modulo phase); i.e., smust equal one of these:

n ¼ fIg; z ¼ fI; Zg; x ¼ fI; Xg;
y ¼ fI; Yg; a ¼ fI; Z; X; Yg: ð2Þ

Since RA is initially a maximally entangled pair, s tells us
exactly what information about R is accessible from F. If
s ¼ n, F is uncorrelated with R. If s ¼ z, x, or y, F
contains one classical bit of information on R: Some Pauli
stringOF on F is perfectly correlated withOR ¼ Z, X, or Y
on R. More precisely, OFOR is a stabilizer of the output
state Ψt: OFORjΨti ¼ �jΨti. If s ¼ a, one may distill
from F a qubit maximally entangled with R [50].
Phase diagram.—The “order parameter” of our model is,

thus, the probability distribution of s:

π ≔ ðπn; πz; πx; πy; πaÞ; ð3Þ

where πn is the probability that s ¼ n, and so on. We can
compute π of a tree with t generations from one with (t − 1)
using a “backward recursion” relation. The phase diagram
of the model is determined by iterating this relation and
analyzing the t → ∞ limit of π as a function of p (and f)
[50]. As a result, we find three phases; see Fig. 1(b) for a
sketch and Fig. 2 for plots. When p < 3=5, we have a QD
phase, where, for any f∈ ð0; 1Þ, we have πa → 0, πn → 0,
and

πz→
3−6pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24ðp−1Þpþ9
p
6−6p

; πx;y→
1−πz
2

: ð4Þ

(πz → 1 as p → 0). When p > 3=4, we have an encoding
phase, where πn → 1 if f < 1=2 and πa → 1 if f > 1=2.
Finally, when 3=5 < p < 3=4, we have a mixed phase. For
any f < 1=2, we have πa → 0 while

ðπn;πz;πx;πyÞ⟶
f<1

2

�
1− u;

u
2
;
u
4
;
u
4

�
; u¼ 6− 8p

3− 3p
: ð5Þ

Here, u is probability that we can retrieve one classical bit
from the subsystem F, and it decreases from 1 to 0 as p
varies from 3=5 to 3=4. The solution for f > 1=2 is
obtained from (5) by swapping πn and πa.
The existence of the two transitions, at p ¼ 3=5 and

p ¼ 3=4, respectively, where π is nonanalytical, can be
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associated to the breaking or restoration of two symmetries
of the model. First, a Z2 symmetry acts by exchanging
πn ↔ πa or swapping the subsystem F and its complement
(without R) [51]. This symmetry is preserved by the circuit
dynamics, weakly broken by the “boundary condition” (the
choice of F), and restored only in the QD phase. Second, a
S3 symmetry acts by permuting x, y, and z (while leaving n
and a invariant). This symmetry is preserved by the random
one-body Clifford unitary, broken by the branching (1), and
restored only in the encoding phase. The mixed phase
breaks both symmetries. We numerically explored a few
other Clifford variants of our model and found the above
two-stage scenario to be rather general [52].
Mutual information and discord.—It is useful to con-

sider the mutual information between F and R, defined
as IðR;FÞ ¼ HðRÞ þHðFÞ −HðRFÞ, where HðXÞ ¼
−Tr½ρXlog2ρX� is the von Neumann entropy. In our model,
it is not hard to see that IðR; FÞ ¼ log2 jsj is the dimension
of s as a vector space over Z2 [50]. So, in the QD phase,

IðR; FÞ → 1 ð0 < f < 1Þ ðQDÞ ð6Þ

with probability one [Fig. 2(c)]. The independence of I on
the fraction size f, sometimes called the “objectivity
plateau,” is a hallmark of QD [16]. Meanwhile, in the
encoding phase,

IðR;FÞ →
�
0 f < 1=2

2 f > 1=2
ðencodingÞ ð7Þ

with probability one [Fig. 2(d)], as expected from the Page
curve [53]. In the mixed phase, we may wonder what the

I-f curve looks like in a single realization (with large t),
where we increase f by gradually adding random qubits
into F. To address this question, we computed the joint
distribution of ðs; tÞ corresponding to two random sub-
systems F ⊂ G and a same unitary U [50]. As a result, we
found that a single-realization I-f curve is exactly the QD
one (6) with probability u defined in (5) and exactly the
encoding curve (7) with probability 1 − u. In other words,
the intermediate-phase ensemble is a mixture of QD and
encoding realizations, both occurring with nonzero prob-
ability in the t → ∞ limit.
In general, the mutual information between F and R does

not correspond exactly to the amount of information that
one can learn about R by observing F [54,55]. The
discrepancy is known as “quantum discord.” Here, the
discord vanishes whenever IðR;FÞ ¼ 1, given the knowl-
edge of the unitary circuit: We can construct the observable
on F which reveals the classical bit of information on F.
Moreover, we can show that, in the QD phase, one may still
retrieve a bit of information fromR even with access to only
the Z operators on F.
Two-replica analysis.—A valuable tool to compute

quantum information quantities is the “replica trick”
[56–61]. Yet, results of replica calculations can be subtle
to interpret, especially if one is not able to take the
appropriate replica number limit. Here, we perform a
two-replica analysis of our model and compare the result
with the exact phase diagram.
In the replica approach, the accessible quantity is the

“annealed” mutual information

Ið2ÞðF;RÞ ≔ log2Tr
h
ρ2FR

i
− log2Tr

h
ρ2F

i
þ 1; ð8Þ

where ½…� denotes an average over U and F. Note that Ið2Þ
would equal to the average von Neumann mutual infor-

mation if Tr½ρ2X�were equal to 2−HðXÞ (which is wrong). The
annealed mutual information can be computed by random
unitary circuit techniques [37,51,62–64]; indeed, since the
Clifford group is a 2-design [65], Ið2ÞðF;RÞ will not change
if we replace a random one-body Clifford unitary with a
Haar-random one in Uð2Þ. We find [50]

Ið2ÞðF;RÞ →

8><
>:

0 f < 1=2; p > pcðfÞ;
2 f > 1=2; p > pcðfÞ;
1 p < pcðfÞ:

ð9Þ

Here,pcðfÞ¼pcð1−fÞ is a threshold function that increases
from pcð0Þ ¼ 3=4 to pcð1=2Þ ¼ 3

7
ð2 ffiffiffi

2
p

− 1Þ ¼ 0.783…;
see Fig. 3.
The “annealed phase diagram” of Ið2Þ is similar to the

exact one, with, however, differences: Ið2ÞðF;RÞ ¼ 1 in
both QD and mixed phases as well as a small part of the
encoding phase. So, the annealed phase diagram is biased

FIG. 2. (a),(b) p dependence of the order parameters 1 − πn
[identical to Fig. 1(b)] and πz. (c),(d) Averaged mutual informa-
tion IðR; FÞ as a function of the size fraction f in the QD and
encoding phase (respectively). The average is over the random
Clifford unitary and the random subset F. The finite t data are
from numerical iteration of the backward recursion, and the t ¼
∞ curves are the exact prediction [50].
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toward QD, which we qualitatively explain as follows. Both
purity averages in (8) are dominated by realizations with
small entanglement entropy in F. Now, QD states tend to
have low entanglement; indeed, the “perfect” QD state
(produced at p ¼ 0) is the Greenberger-Horne-Zeilinger
(GHZ) state [66]:

jGHZi ¼ 1ffiffiffi
2

p ðj0R 0…0|ffl{zffl}
F

0…0i þ j1R 1…1|ffl{zffl}
F

1…1iÞ:

It has one bit of entanglement entropy for any bipartition. In
comparison, an encoding state has a volume law entropy.
Hence, in both QD and mixed phases, QD realizations will
dominate Ið2Þ, which fails to distinguish them. In the
encoding phase, a QD realization occurs with an exponen-
tially small (in t) probability, yet its Tr½ρ2F� and Tr½ρ2FR� can
be exponentially large compared to the typical encoding
states. Hence, rare QD states in the encoding phase can
dominate the annealed mutual information.
Relating to MIPT.—The QD-encoding transitions

(QDETs) differ from the MIPTs in two ways. First,
MIPTs result from the competition between a scrambling
system and its environment (the measurement apparatus).
Meanwhile, QDETs take place within a structured envi-
ronment [67]. In the QD phase, the environment behaves as
a macroscopic apparatus that “measures” the reference spin
in some direction (the direction is Z with probability πz, and
so on) and broadcasts the outcome. As we tune the
apparatus into the encoding phase, it becomes dysfunc-
tional and fails to broadcast any information on the
reference system.
Second, QDETs are about the information available in

small environment fractions, while MIPTs are observable
only with full access to the environment. To support this

claim, we consider a variant of our model that mimics the
MIPT setup. We take the above model at p ¼ 1 (in the
encoding phase) and let every qubit in the tree be subject to
an eavesdropping event with probability r. The eavesdrop-
ping consists again as a branching (1), of which one output
bit is then emitted to the “environment”; see Fig. 1(c). After
t generations, we have a system with N ¼ 2t bits and an
environment E of average size jEj ¼ ð2N − 1Þr.
Then we ask: Can we retrieve information on R from

a fraction F of the environment, with jFj=jEj ¼ f?
Moreover, we allow access only to Z operators on F
(allowing access to all operators results in an entirely
different phase diagram [52]). Then, the order parameter (3)
obeys a modified recursion relation [50]. In particular,
πa ¼ 0, and the probability of retrieving one classical bit
equals 1 − πn. We find that, when f ¼ 1, there is a
transition:

πn⟶
f¼1

�
4r2−8rþ1

1−r r < rc
0 r > rc;

ð10Þ

where rc ¼ 1
2
ð2 − ffiffiffi

3
p Þ ≈ 0.134. This transition is equiv-

alent to the standard MIPT. Indeed, consider projectively
measuring Z on all the qubits of F. If s ¼ n, the
measurements reveal nothing about R, which remains
entangled with unmeasured bits. Otherwise, if, say,
s ¼ x, the measurements will project the qubit R to an
eigenstate of X, disentangling it. Therefore, r > rc is the
area-law (purified) phase and r < rc the volume-law
(encoded) phase [34,42,44,45]. Note that the transition
exists only at f ¼ 1, where almost all the environment is
accessible. For any f < 1, πnðt → ∞Þ depends smoothly
on r and never vanishes. This is, after all, reasonable from
the MIPT point of view: We need all the measurement
outcomes to construct the quantum trajectory state.
Outlook.—We introduced a solvable model for QDETs.

They are a new type of quantum information phase
transitions under unitary evolution, where the different
phases are characterized by whether information about the
reference qubit is retrievable from small fractions of the
environment. It will be interesting to identify QDETs in
finite-dimensional (d < ∞) systems and characterize their
universality classes; our tree model is equivalent to an all-
to-all (d ¼ ∞) circuit and has simple mean-field critical
exponents [68]. In particular, it may be nontrivial to
establish a QD phase in a d < ∞ geometry, which hinders
the fast spread of information [69–71]; an expanding (de
Sitter) geometry could be necessary. Another important
question concerns QDETs in non-Clifford models
[24,41,72], in particular, whether the mixed phase is
generic. Indeed, the knowledge of F on R is, in general,
not “quantized” as in a Clifford model. This will affect the
nature of the order parameter and make even the mean-field
theory more involved [46,47,73]. Finally, encoding is
proper to the quantum realm, and quantum Darwinism is

FIG. 3. Comparing the annealed mutual information Ið2ÞðF; RÞ
(9) with the genuine one IðF;RÞ. They disagree in the mixed
phase (3=5 < p < 3=4) and in part of the encoding phase where
3=4 < p < pcðfÞ. pcðfÞ (solid curves) is determined numeri-
cally using the recursion relation for Ið2Þ [50].
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a theory of the emergence of the classical. Thus, we hope to
shed light on the quantum-classical transition through the
lens of dynamical critical phenomena.
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