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We find a closed-form expression for the Poisson’s coefficient of curved-crease variants of the “Miura
ori” origami tessellation. This is done by explicitly constructing a continuous one-parameter family of
isometric piecewise-smooth surfaces that describes the action of folding out of a reference state. The
response of the tessellations in bending is investigated as well: using a numerical convergence scheme, the
effective normal curvatures under infinitesimal bending are found to occur in a ratio equal and opposite to
the Poisson’s coefficient. These results are the first of their kind and, by their simplicity, should provide a
fruitful benchmark for the design and modeling of curved-crease origami and compliant shell mechanisms.
The developed methods are used to design a curved-crease 3D morphing solid with a tunable self-locked
state.
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The properties of architected materials and metamate-
rials are just as much, if not more, a product of geometry
and spatial layout as they are of the properties of the raw
materials that they are made of. Here is a striking example
from the classical theory of composites [1]: the effective
Young’s modulus of an isotropic porous plate does not
depend on the Poisson’s coefficient of the raw material
and instead depends only on the spatial distribution of the
pores [2]. Moreover, for highly porous plates, the effective
Poisson’s coefficient is a pure product of geometry and is
completely independent of the raw material [3].
Origami tessellations, as well as other architected mate-

rials composed of structural elements including bars and
plates connected at joints, provide more recent examples
where the Poisson’s coefficient is a purely geometric
construct [4,5]. Such structures are near mechanisms and
possess a soft deformation mode whose effective Cauchy-
Green tensor I defines the Poisson’s coefficient

ν≡ −
dI22=I22
dI11=I11

: ð1Þ

Typically, the soft deformation mode engages rotations at
the joints and moves the structural elements as rigid bodies.
This makes the computation of ν particularly straightfor-
ward, however algebraically complex it may be [6]. That
said, there are highly compliant structures that cannot be
treated in the same fashion, namely, as linkages, for their
soft deformation modes necessarily involve the bending of
the structural elements [7]. Examples include inextensible
elastic curves and surfaces. For curved-crease origami [8],
the difficulty is compound: On the one hand, the presence
of curved folds couples folding angles to bending in the
facets. On the other hand, the inextensible bending within
facets still has to be compatible at the curved-crease lines.

Rigorous results in the field of curved-crease origami are
relatively recent, even though a characterization of devel-
opable surfaces has been known since Euler. Recall that a
developable surface is a smooth surface that is locally
isometric to a plane; i.e., it is a surface assembled from
planar pieces that are bent without stretching or creasing.
Euler showed that developable surfaces are ruled: they
are composed of straight segments of finite lengths.
Furthermore, the ruling is torsal: the tangent plane main-
tains tangency along each rule segment [9]. What was
lacking, and is currently actively researched, is an under-
standing of how the rule segments of different developable
facets can fit together along crease lines and still produce a
surface that is locally isometric to a plane. Demaine,
Demaine and collaborators championed efforts in this area
building on previous work by Huffman [10,11]. They were
able to design, and prove the (mathematical) existence of,
multiple curved-crease origami sculptures based on an
understanding of which distributions of rule segments
are compatible with which curved-crease lines [12–14].
Discretizations, guided by similar considerations, led to
fruitful form-finding numerical tools [15–18]. Some semi-
analytical asymptotic tools are also available for patterns
composed of thin facets (or ribbons) [19,20]; see also [21].
In this Letter, a different approach is proposed. Rather

than working facet by facet, a global isometry (by immer-
sion) between the planar and folded state is directly
constructed. The isometry is in fact one instance of a
continuous one-parameter family of isometries for which
closed-form expressions are provided. In particular, this
allows one to compute the Poisson’s coefficient ν of a
curved-crease origami tessellation via simple integration.
Evidently, such methods are not universal but are
applicable for a class of tessellations that, however
restricted, is ubiquitous in engineering applications,

PHYSICAL REVIEW LETTERS 132, 108201 (2024)

0031-9007=24=132(10)=108201(6) 108201-1 © 2024 American Physical Society

https://orcid.org/0009-0006-0407-4148
https://orcid.org/0009-0001-5095-9637
https://orcid.org/0000-0001-7235-4498
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.108201&domain=pdf&date_stamp=2024-03-07
https://doi.org/10.1103/PhysRevLett.132.108201
https://doi.org/10.1103/PhysRevLett.132.108201
https://doi.org/10.1103/PhysRevLett.132.108201
https://doi.org/10.1103/PhysRevLett.132.108201


including curved-crease foldcores used in sandwich panels
[22–24]. To present the approach, a curved-crease variant
of the Miura ori is adopted as an archetypical example first.
Generalizations to other patterns and applications to the
design of curved-crease 3D compliant mechanisms follow.
Thus, let α∶u ↦ (u; a sinðquÞ; 0) describe a sinusoidal

curved crease of parameters ða > 0; q > 0Þ, and let β∶v ↦
ð0; v; 0Þ describe a straight line. Consider the parametriza-
tion of the plane x∶ðu; vÞ ↦ αðuÞ þ βðvÞ illustrated in
Fig. 1(a). The purpose is to determine a one-parameter
family of parametrized surfaces θ ↦ xθ that are isometric
to x. These surfaces must be piecewise smooth with jumps
in the tangent plane located at a series of crease lines
fv ¼ mbg, with m an integer and b being a uniform
spacing between two consecutive crease lines. The idea
is to construct xθ as a “surface of translation,” i.e., in the
form xθ∶ðu; vÞ ↦ αθðuÞ þ βθðvÞ, where the curves αθ and
βθ are deduced from the originals α and β by maintaining
the isometric character of the deformation, that is, such that

hαθ
uðuÞ;αθ

uðuÞi ¼ hαuðuÞ;αuðuÞi ¼ 1þ a2q2 cos2ðquÞ;
hβθvðvÞ; βθvðvÞi ¼ hβvðvÞ; βvðvÞi ¼ 1;

hαθ
uðuÞ; βθvðvÞi ¼ hαuðuÞ; βvðvÞi ¼ aq cosðquÞ; ð2Þ

where the subscripts stand for derivatives. Hereafter, it will
prove convenient to build αθ and βθ from their respective
tangent vectors αθ

u and βθv by integration according to

αθðuÞ ¼
Z

u

0

αθ
uðξÞdξ; βθðvÞ ¼

Z
v

0

βθvðζÞdζ: ð3Þ

Now intuition and experiment suggest βθ be a “zigzag” of a
tangent vector βθv defined piecewise by

βθvðvÞ ¼
� ð0; cos θ; sin θÞ for 0 ≤ v < b;

ð0; cos θ;− sin θÞ for b ≤ v < 2b;
ð4Þ

and so on, by alternating signs. Then, let

αθ
uðuÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a2q2 cos2ðquÞtan2 θ

q
; aq

cosðquÞ
cos θ

;0

�
ð5Þ

so as to fulfill the requirement of xθ being isometric
to x, namely, Eq. (2). Furthermore, xt¼0 ¼ x. Accordingly,
θ ↦ xθ parametrizes a continuous isometric deformation
out of the planar state x; the family is illustrated in Fig. 1.
The deformation parameter θ is the acute angle between the
zigzag segments and the plane fz ¼ 0g. That angle cannot
be arbitrarily large and is bound by a value that corresponds
to a maximally folded state. Indeed, xθ is well defined if,
for all u,

1 − a2q2 cos2ðquÞ tan2 θ ≥ 0; ð6Þ

i.e., if

jθj ≤ π

2
− arctanðaqÞ≡ Θ: ð7Þ

In other words, angle θ must remain smaller than the
smallest angle that the curved crease α makes with the
ruling fx ¼ cstg, namely, Θ. As θ reaches its upper bound
Θ, the triad composed of the tangents to the curved crease
and to the two sides of the zigzag folds flat at u ¼ πm=q for
any integer m [Fig. 1(c)].
It is noteworthy that the folded surfaces xθ are periodic

with a unit cell ½0; 2π=q� × ½0; 2b�, the same as the original
crease pattern. Even though all of these surfaces are
mutually isometric, it is possible to define an effective
stretch based on the span of the image of the unit cell.
Hence, let Iθ be the effective metric of xθ given by

Iθ11 ¼ hᾱθ
u; ᾱθ

ui; Iθ22 ¼ hβ̄θv; β̄θvi; Iθ12 ¼ hᾱθ
u; β̄

θ
vi; ð8Þ

where ᾱθ
u ≡ ðq=2πÞ R 2π=q

0 αθ
udu and β̄θv ≡ ð1=2bÞ R 2b

0 βθvdv.
It is easy to verify that

Iθ11 ¼
4

π2
E2ðμÞ; Iθ22 ¼ cos2 θ; Iθ12 ¼ 0; ð9Þ

FIG. 1. Curved-crease variant of the Miura ori and the used notations. (a) Crease pattern in a flat reference configuration. Some ruling
segments are revealed to improve visibility; the thicker curved lines are crease lines. (b) Partially folded state. (c) Fully folded state:
θ ¼ Θ. Inset: axial view that better shows the (locally) flat-folded ruling segments. The values used are a ¼ q ¼ 1,Θ ¼ π=4, and b ¼ 3.
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where EðμÞ is the complete elliptic integral of the second
kind evaluated at μ ¼ a2q2 tan2 θ ¼ tan2 θ=tan2Θ. In par-
ticular, at θ ¼ 0, Iθ¼0 ¼ I is the identity. In conclusion of
this section, letting KðμÞ be the complete elliptic integral of
the first kind, the Poisson’s coefficient is

νðθÞ≡ −
İθ22=I

θ
22

İθ11=I
θ
11

¼ tan2 θ
1þ tan2 θ

EðμÞ
EðμÞ − KðμÞ ð10Þ

and is negative. The variations of the Poisson’s coefficient
of curved-crease variants of the Miura ori are illustrated in
Fig. 2 (top panel). It is seen that the curved creases increase
the Poisson’s coefficient, in absolute value, by a factor of 2
for comparable maximum angles Θ and folding fractions
θ=Θ. Note that for largerΘ, the Poisson’s coefficient attains
more extreme values because the foldings of the two curves
α and β become increasingly decorrelated (Fig. 2, bottom
sketches). It is important to stress that it is not clear whether
or not the isometric deformation found is unique, and
therefore whether it will occur as a mechanical response.
That being said, finite element simulations carried over thin
elastic shells suggest that the proposed isometric deforma-
tion indeed dominates the mechanical response, at least
under periodic boundary conditions that are suitable for the
extraction of effective properties; see Ref. [25].

The above formulas can be generalized in a straight-
forward fashion to curved creases α∶u ↦ (u; fðuÞ; 0)
with arbitrary profile f, be it smooth or piecewise smooth,
as long as jf0j < ∞. In [26], Lee et al. investigated
folded states where f described an elastica curve, but neither
the folding motion xθ nor the Poisson’s coefficient ν
were provided. Closer to the foregoing investigations is
the work of Mundilova [27] (see also [28]). Mundilova
computed a one-parameter family of isometries that deform
a planar domain into a cylindrical domain while preserving
the planarity of a given curve, e.g., yθ∶ ðu; vÞ ↦ αθðuÞ þ
vð0; cos θ; sin θÞ. Then, xθ is recovered by composing yθ

with a sequence of reflections about two planes, one
containing the planar curve and another parallel to it, say,
fz ¼ 0g and fz ¼ sin θg. In contrast to this geometric
approach, the present analytical approach has the advantage
of carrying over to other nondevelopable surfaces of trans-
lation, i.e., where the “facets” are doubly curved. Figure 3
illustrates the reach of the approach over a number of
examples; details can be found in the Supplemental
Material [25].
There is another purely geometric coefficient that char-

acterizes the response of origami tessellations in bending
this time. To introduce it, let xθ be a folded state, and
consider an infinitesimal displacement of the form

D∶ ðu; vÞ ↦ ðxðu; vÞ; yðu; vÞ; zðu; vÞ þ Eu2=2þ Gv2=2Þ:
ð11Þ

This displacement is meant to describe an effective bending
displacement of xθ that induces the given normal curva-
tures κ1 ≡ E=Iθ11 and κ2 ≡G=Iθ22. Then, the ratio of normal
curvatures, namely, ν̂≡ −κ2=κ1, mimics an “out-of-plane”
Poisson’s coefficient and is worthy of investigation: On the
one hand, its sign indicates whether the tessellation bends
into a dome or a saddle. On the other hand, its magnitude

FIG. 2. Poisson’s coefficient. Top panel: variations of the
Poisson’s coefficient vs the relative folding angle for both the
original [6] Miura ori (dashed lines) and curved-crease variant
(solid lines) with equal unit cell dimensions and maximum fold
angle Θ; angle Θ is sampled every 5° from 45° to 70° and
increases with the arrow. Bottom sketches: folded states for an
extreme value of Θ ∼ π=2; note how the motion proceeds in one
direction, then in another.

FIG. 3. Isometric deformations of surfaces of translation.
(a) Surface with both straight and curved creases. (b) Non-
developable surface with straight creases known as the eggbox
pattern. (c) Creaseless smooth variant of (b).
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quantifies the discrepancy, or lack thereof, between the
curvatures in the two directions of periodicity. To find ν̂,
one must find D such that xθ þD is infinitesimally
isometric to xθ. For the curved-crease variant of the
Miura ori under consideration, we carried numerical
simulations where θ is given, G is imposed at a boundary,
say, fu ¼ 0g, D is computed by propagating (infinitesimal)
inextensibility constraints away from the boundary [25,29],
and E is evaluated by finite differences. The infinitesimally
bent state is illustrated on Fig. 4(a) and the numerical
results are compiled in Fig. 4(b). These show that

ν̂ ¼ −ν ð12Þ

up to a small error proportional to bG [30]. This identity
was first discovered for the original Miura ori [6,31] and
later noted for other patterns with straight creases (e.g., the
“eggbox” pattern [32], the “morph” pattern [33], and
“zigzag sums” [34]). A recent theoretical development
shows that it holds for any periodic surface [35,36]. Identity
(12) shows that the in-plane and out-of-plane responses of
curved-crease origami tessellations are tied together.
Although this can be a hindrance for design, e.g., free-
form, purposes, it can be a major advantage for control

purposes. By imposing one curvature along a boundary, the
geometry in the bulk of the tessellation’s domain can be
specified.
As discussed above, upon folding, the curved crease αθ

remains planar. Therefore, it is possible to produce a 3D
foldable solid by stacking together copies of xθ and of its
mirror image relative to fz ¼ 0g, in an alternating fashion.
Following Schenk and Guest [6], it is possible to assemble
more interesting foldable solids with a self-locking prop-
erty. Instead of stacking copies of xθ, consider another
curved-crease origami y given by

yuðuÞ ¼ (1; aq cosðquÞ; 0);

yvðvÞ ¼
� ð0; cos θo; sin θoÞ for 0 ≤ v < c;

ð0; cos θo;− sin θoÞ for c ≤ v < 2c:
ð13Þ

Note that y is prefolded through an initial angle θo equal to
the initial elevation of the zigzag lines fu ¼ cstg of y above
the horizontal. Thus, it is possible to assemble x and y by
gluing them, say, at even numbered creases fv ¼ 2mbg and
fv ¼ 2mcg if the steps b and c are such that b ¼ c cos θo.
As x folds into xθ, y folds into a surface yδ defined to be
isometric to y in the same manner presented above, namely,
with

yδuðuÞ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2q2 cos2ðquÞ

�
1 −

cos2 θo
cos2ðθo þ δÞ

�s
;

aq
cosðquÞ cos θo
cosðθo þ δÞ ; 0

1
CA;

yvðvÞ ¼ (0; cosðθo þ δÞ; ð−1Þm sinðθo þ δÞ); ð14Þ

where the deformation parameter δ is chosen, if possible, to
ensure that contact between xθ and yδ is maintained at the
same even numbered creases. When the expressions for yδu
and xθ

u are compared, it turns out that this is possible if

cosðθo þ δÞ ¼ cos θ cos θo: ð15Þ

By alternating copies of xθ and yδ, a foldable solid is
obtained. The solid is maximally folded for θ ¼ Θ; then, as
θ decreases, it unfolds up to θ ¼ 0. At that point, xθ¼0 ¼ x
is flat unfolded and brings the unfolding of the solid to a
halt. This motion is illustrated in Fig. 5(a). Such solids with
predetermined unfolded states provide deployable sand-
wich panels with curved-crease foldcores for space struc-
tures and morphing airfoil applications. Note that the
maximally unfolded “locked” state can be tuned by adjust-
ing the prefolding parameter θo. Note also that the
Poisson’s coefficients in the ðx; zÞ and ðz; yÞ planes can

FIG. 4. Normal curvatures. (a) Infinitesimally bent state. The
top (bottom) view puts forward the imposed (induced) curvature
in the zigzag (curved-crease) direction. Inset: depiction of the
saddle shape. (b) Identity of Poisson’s coefficients. The numerical
error vs normalized curvature for various folding angles θ was
sampled every ∼5° from ∼22° to ∼45°; θ increases with the arrow
except for the outlier which corresponds to an almost maximally
folded state. (For θ=Θ ∼ 1, ν changes drastically; see Fig. 2. This
justifies the slower convergence rate).
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be computed using the expressions of xθ and yδ, but this is
not pursued here.
Part of the energy required to deploy the solid is due to

crease folding and can be modeled as a lineal density
function of dihedral angles at crease lines; this density
promises to be highly nonlinear as well as material and
history dependent, except in a limiting case where the
creases have zero stiffness [37]. This ideal limit is adopted
here and our focus shifts to the remainder of elastic energy
due to bending between the creases. The fact that the
deformation is isometric implies that the bending energy
ε≡ εðθÞ is a function of a single measure of curvature, e.g.,
the mean curvature H if the constitutive material is
isotropic. Thus, up to a coefficient of bending rigidity,
ε ¼ εx þ εy , with

εxðθÞ ¼
1

2

Z
2π=q

0

Z
2b

0

�
Hðu;v;xθÞ−H0ðu;vÞ�2dudv ð16Þ

being the bending energy of layer x. H0 is its mean
curvature in the natural configuration and H is its mean
curvature [25]. The energy εy is similarly defined. The
profiles of ε, εx, and εy vs elongation as measured by
cosðθÞ are depicted in Fig. 5(b) assuming that the natural
configurations of the layers are those that occur in a
maximally deployed solid. Interestingly, ε reaches the
natural state with a nonzero slope; this slope is equal to
the buckling load required to trigger the folding of layer x
out of its flat-unfolded state.
In conclusion, the presence of curved creases couples

bending and folding and requires new methods for the
design and analysis of deployable structures, compliant
shell mechanisms and morphing metamaterials. This Letter
contributes to that effort for a class of curved-crease
variants of the Miura ori, as well as other developable
and nondevelopable surfaces of translation. Although the
methods proposed here are specific to these cases, they
provide insight into the behavior of more general curved-

crease origami patterns and are a useful benchmark for the
development of more universal theories and tools of
numerical simulation. Analysis here was restricted to
predefined deployment paths; a more general description
needs to fully account for the interaction between the
inextensible kinematics and the elastic energy landscape.
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