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We develop a theory for heat transport via electromagnetic waves inside media, and use it to derive a
spatially nonlocal thermal conductivity tensor, in terms of the electromagnetic Green’s function and
potential, for any given system. While typically negligible for optically dense bulk media, the
electromagnetic component of conductivity can be significant for optically dilute media, and shows
regimes of Fourier transport as well as unhindered transport. Moreover, the electromagnetic contribution is
relevant even for dense media, when in the presence of interfaces, as exemplified for the in-plane
conductivity of a nanosheet, which shows a variety of phenomena, including absence of a Fourier regime.
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Heat transfer through electromagnetic (EM)waves can be
traced back to Max Planck’s renowned law of blackbody
radiation [1], providing the classic behavior for heat
exchange by quantized traveling modes between objects
separated by vacuum at appropriate large scales. Polder and
van Hove introduced the concept of near-field thermal
transport [2], revealing a significant enhancement of transfer
at distances smaller than the relevantwavelengths, eliciting a
mechanical response viamomentum transfer [3] and endow-
ing vacuumwith an effective friction through radiation with
broken time-reversal symmetry [4]. Experimental studies
have substantiated predictions of transfer across a range of
setups [5–8].
For objects separated by vacuum, photons serve as the

primary mechanism for energy transport. Within material
media, other modes, e.g., kinetic, electronic, or phononic,
generally provide superior routes for thermalization.
Practical considerations aside, theoretical treatment of
EM contributions within absorptive media is challenging
due to the need for careful handling of the Poynting vector
[9]. Rigorous approaches are thus often limited to objects
separated by nonabsorbing media [10].
Despite these limitations, investigations have been con-

ducted into collections of nanoparticles [11–14] or slabs
[15] separated by vacuum gaps, which ensure unimpeded
radiation between separate components. These studies have
revealed novel transport behavior, including “superdiffu-
sive” and “ballistic” regimes. Similar phenomena have
been studied in the context of thermally driven [16] and
active [17] colloidal systems, where the nonlocal nature of
the transport phenomenon leads to the violation of fluc-
tuation-dissipation theorem [18].

However, it has been noted that EM radiation can
compete with other mechanisms even within media, for
example in situations involving interfaces and surface
waves [19–24]. These predictions are based on dispersion
relations for interfaces and the Boltzmann transport equa-
tion [19–23], or the Poynting vector [24,25]. Recent
experiments [26–28] have indeed demonstrated a strong
increase of in-plane thermal conductivity of thin films,
hinting on the strong contribution by EM surface waves.
Such predictions and experimental findings underscore the
need for a comprehensive and rigorous theoretical treat-
ment of EM heat transport through materials.
Here, we develop a formalism for calculating heat trans-

port via EM fluctuations in dispersive media. The key
underlying premise of the framework is the observation that
the local value of the temperature field acts as a source that
excites radiation fluctuations that transport energy to other
regions in space (see Fig. 1), hence rendering the transport
of heat through EM radiation a fundamentally nonlocal
effect. By considering local Ohmic loss, we circumvent
Poynting’s theorem and obtain a general expression for the
nonlocal, i.e., scale-dependent thermal conductivity arising
from EM waves. As applications, we investigate an opti-
cally dilute bulk medium and identify regimes of Fourier
and unhindered transport. Intriguingly, radiative conduc-
tion can potentially surpass other conductive mechanisms
for large decay lengths. For a nanosheet, we uncover
various phenomena originating from the slow decay of
EM modes. For distances large compared to the decay
length of surface waves, the conduction kernel exhibits a
power law (and not exponential) decay. This leads to the
absence of a Fourier-law limit for the sheet. We compare to
the Boltzmann equation approach, delineating regimes for
its (non)validity.
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Consider a medium with temperature TðrÞ varying
smoothly with position r, implying assumption of validity
of a local Bose-Einstein distribution. For frequency ω ≥ 0,
the mean energy of photons emitted at r is thus [1]

Θðω; rÞ ¼ ℏω

�
1

e
ℏω

kBTðrÞ − 1
þ 1

2

�
; ð1Þ

where ℏ and kB are Planck’s and Boltzmann’s constants,
respectively. The radiation sourced by the volume element
at position r is expressed in terms of the correlation of
electromagnetic fields [29] (c is vacuum speed of light),

Cr ≡ hE ⊗ E�iðrÞω ¼ 8πω

c2
Θðω; rÞGðV IIrÞG†; ð2Þ

where operator notation is understood [30,31]. G is the
system’s Green’s tensor, and we have introduced the EM
potential V ¼ ðω2=c2Þðε − IÞ þ∇ × ðI − μ−1Þ∇×, with
permittivity and permeability tensors ε and μ, and identity
I. Expressing dissipation as V I ≡ ðV − V†Þ=2i allows for
optical nonreciprocity [32]. We further require the EM
potential to be local [9] on scales shorter than variations of
temperature, and introduce Ir ¼ Iδð3Þðr1 − rÞδð3Þðr − r2Þ,
with identity matrix I , to pick the source point in Eq. (2).
As V I is local, Ir and V I commute, and ðV IIrÞ is Hermitian

and nonnegative, and denoted by ðV IIrÞ≡ V ðrÞ
I .

The radiation in Eq. (2) leads to absorption of energyHω

by a volume element at r0. To avoid the Poynting vector, we
directly compute the local Ohmic loss [9,33],

Hωðr → r0Þ ¼
1

π
RehEðr0Þ · J�ðr0ÞiðrÞω : ð3Þ

To proceed, we use the free Green’s function G0 to convert
between the total field and the total current [9,34],
E ¼ 4πiðω=c2ÞG0J. Substituting J into Eq. (3) and using
Eq. (2) yields

Hωðr → r0Þ ¼ −
2

π
ΘðrÞImTr

h
Ir0GV

ðrÞ
I G†G†−1

0

i
: ð4Þ

Using identityG† ¼ G†
0 þ G†

0½I − V†G†
0�−1V†G†

0 and resum-
ming the inverse, we obtain

G†G†−1
0 ¼ I þ G†

0

�
I − V†G†

0

�−1V† ¼ I þ G†V†: ð5Þ
Plugging Eq. (5) into Eq. (4) gives two contributions

Hωðr → r0Þ
2
πΘðrÞ

¼ Tr
h
GV ðrÞ

I G†V ðr0Þ
I − Im

�
Ir0GV

ðrÞ
I

�i
: ð6Þ

The second term represents reabsorption at r, and does not
contribute to energy exchange, while the first one accounts
for heat transport from r to r0. Notably, when r and r0 are
integrated over disconnected object volumes, Eq. (6)
recovers the known expressions for heat transfer between
separate bodies [30,35]. Equation (6) is nonperturbative as
G contains V to all orders, and is valid for large or small V .
Expanding G for small V , Eq. (6) reproduces the heat flow
in systems of small particles in vacuum [11,36].
Balancing energy absorption and emission at r0 yields

the divergence of energy currentJ ; see Fig. 1. We integrate
over ω and r, to obtain (∇≡∇r and ∇0 ≡∇r0)

−∇0 ·J ðr0Þ ¼
Z

∞

0

dω
Z

d3r½Hωðr → r0Þ −Hωðr0 → rÞ�

¼ 2

π

Z
∞

0

dω
Z

d3r½Θðω; rÞAðr; r0Þ

− Θðω; r0ÞAðr0; rÞ�: ð7Þ

In the last step, we have introduced the abbreviation

Aðr; r0Þ≡ Tr
h
GV ðrÞ

I G†V ðr0Þ
I

i
; ð8Þ

for the spectral conductivity kernel, which is nonnegative.
We continue with reciprocal media, for which Aðr; r0Þ ¼
Aðr0; rÞ is symmetric, and Eq. (7) becomes

−∇0 ·J ðr0Þ¼
2

π

Z
∞

0

dω
Z

d3r½ΘðrÞ−Θðr0Þ�Aðr;r0Þ: ð9Þ

A≥0 ensures that energy flows fromwarmer to colder volu-
me elements. Specializing to small variations in tempera-
ture around T0, we linearize the Bose-Einstein weight
ΘðTÞ ¼ ΘðT0Þ þ kBN ðω̃ÞðTðrÞ − T0Þ þ � � �, with dimen-
sionless ω̃ ¼ ℏω=kBT0 and N ðω̃Þ ¼ ω̃2eω̃=ðeω̃ − 1Þ2.
We get

−∇0 ·J ðr0Þ ¼
2

π

Z
d3rAðr; r0Þ½TðrÞ − Tðr0Þ�; ð10Þ

with conductivity kernelAðr;r0Þ≡kB
R
∞
0 dωN ðω̃ÞAðr;r0Þ,

which, asN ≥ 0, is nonnegative as well. Equation (10) can

FIG. 1. Medium with permittivity and permeability tensors ε
and μ, and associated electromagnetic potential V and Green’s
tensor G. A temperature profile TðrÞ leads to heat currents
between volume elements described by Eq. (7).
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be turned in a gradient expansion in T, by expanding Tðr0Þ
around r, TðrÞ − Tðr0Þ ¼ ð1 − eðr0−rÞ·∇ÞTðrÞ, so that

−∇0 ·J ðr0Þ ¼
2

π

Z
d3rAðr; r0Þð1− eðr0−rÞ·∇ÞTðrÞ: ð11Þ

Matching Eq. (11) with a nonlocal Fourier law,

−∇0 ·J ðr0Þ ¼ ∇0 ·
Z

d3rκðr0; rÞ ·∇TðrÞ; ð12Þ

we obtain the nonlocal conductivity tensor [37]

κðr0; rÞ ¼
2

π
∇−1

0 Aðr; r0Þ
�
1 − eðr0−rÞ·∇

	
⊗ ∇−1: ð13Þ

Equation (13) is a main result of this work, providing the
conductivity tensor from EM waves inside media, for
general shapes and inhomogeneities (as encoded in G).
For uniform isotropic bulk, Aðr; r0Þ ¼ Aðjr − r0jÞ, rec-

ommending a 3D Fourier transform from r − r0 to q, using
eðr0−rÞ·∇eiq·ðr0−rÞ ¼ 1. κ ¼ Iκ is then diagonal and depends
on q≡ jqj,

κðqÞ ¼ 16π2kB
q2

Z
∞

0

dωN ðω̃Þ½Aðq ¼ 0Þ − AðqÞ�; ð14Þ

where AðqÞ ¼ ð1=2π2qÞ R∞
l dr AðrÞr sinðqrÞ, with r ≡

jr − r0j. A lower cutoff length l ≥ 0 reflects the breakdown
of the continuum approach at atomistic scales. Since
qr ≥ sinðqrÞ and d=dqð1=q3Þ½qr − sinðqrÞ� ≤ 0, κ is pos-
itive and decays monotonically with q and with l.
The Green’s tensor for a nonmagnetic isotropic homo-

geneous medium is found fromG0 by replacing the vacuum
speed of light c by the complex speed of light in the me-
dium c=

ffiffiffi
ε

p
, with wave number k¼ðω=cÞ ffiffiffi

ε
p

. As both emis-
sion and absorption are governed by V I ¼ ðω2=c2ÞIm½ε�I,
Eq. (8) yields (neglecting singular parts at r ¼ 0) [34]

AðrÞ ¼ Im½ε�2 ω4

c4

8π2r2
e−2Im½k�r

�
1þ 2Im½k�

rjkj2

þ jkj2 þ 4Im½k�2
jkj4r2 þ 6Im½k�

r3jkj4 þ 3

jkj4r4
�
: ð15Þ

Using this in Eq. (14) allows us to find κ as a function of q.
It is insightful to start by expanding the integrand of κðqÞ
for small q. This yields a regime of q-independent Fourier
conductivity, involving integrals

Im ¼
Z

∞

l
dr rme−2Im½k�r; ð16Þ

where m∈ f2; 1; 0;−1;−2g from the terms in Eq. (15).
From small r behavior, Im ∼ lmþ1, i.e., the terms m ¼ −1
and m ¼ −2 depend on the cutoff as logðlÞ and l−1,

respectively. Numerical evaluation for a dense medium,
such as doped Si (see εSi below), yields κ negligible
compared to other conduction mechanisms.
Notably, the behavior at large r, Im ∼ Lmþ1, with

frequency dependent decay length L ¼ Im½k�−1, implies
a possibly large κ for large L, which we examine with the
following model of dielectric permittivity, εðωÞ¼1þαω2

0=
ðω2

0−ω2− iγωÞ. It contains an infrared resonance, set at
ω0 ¼ 1.26 × 1014 rad s−1, and damping γ ¼ ω0=10. For
α ≪ 1, absorption is small, and the decay length Lðω0Þ ≈
2cγ=αω2

0, diverges as α → 0. The main panel of Fig. 2
shows the numerically obtained conductivity as a function
of q for α ¼ 10−n with n∈ f4; 5; 6; 7g, corresponding to
Lðω0Þ ¼ 10n × 0.48 μm, i.e., L ranges between 4.8 mm
and 4.8 m in the graph, as labeled.
The data in Fig. 2 are dominated by the contribution of

the far-field term in Eq. (15), which is shown as solid lines
[41]. For q ≪ Im½k�, the aforementioned Fourier regime of
q-independent conductivity is approached [42],

κB ¼ kB
3π2

Z
∞

0

dωN ðω̃ÞRe½ε�
3
2
ω
c

Im½ε� ; ð17Þ

which agrees exactly with the conductivity starting from
the Boltzmann equation [43,44], by identifying group
velocity c=j ffiffiffi

ε
p j and mean free path L=2. Equation (17)

shows that the small q limit grows as Im½ε�−1 ∼ L,
diverging for the limit of empty vacuum. This is surprising
as both emission and absorption vanish in this limit, yiel-
ding a factor of 1=L2. This is compensated by I2 ∼ L3 in
Eq. (16). The divergence of κ as L → ∞ is reminiscent of
Olbers’ paradox [45].
Expanding the far-field term in Eq. (15) for q ≫ Im½k�

yields a regime of κ ∼ q−2 [46], in agreement with the

FIG. 2. EM heat conductivity of a dilute medium at T0 ¼
300 K as a function of wave number q, for various lengths Lðω0Þ.
Solid and dashed lines show analytical limits. Inset: κðq ¼ 0Þ as
a function of Lðω0Þ. Dashed lines give literature values of
conductivity for selected materials [38–40].
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numerical data of Fig. 2. Such highly nonlocal conductivity
(compare also Ref. [11]) is a manifestation of unhindered
transport of photons, and was to our knowledge not
identified in previous studies of photonic transport. The
conductivity from the far-field term vanishes for large q,
and is at q ≈

ffiffiffiffiffi
lL

p jkj2 superseded by the cutoff-dependent
near-field contribution due the last term in Eq. (15), leading
to the other plateau in Fig. 2. This plateau follows ∼l−1, and
we use l ¼ 0.1 nm in the graph.
The inset of Fig. 2 shows the small q limit as a function

of L, reaffirming the linear (cutoff-independent) growth
with L of Eq. (17), i.e., κ=L ≈ 840 W=ðm2KÞ for the
chosen parameters. The inset also indicates literature
conductivity values of a variety of materials for compari-
son, illustrating the relatively large predicted κ of optically
dilute media. The decay length of air may be estimated to
be around 5 m [47], and for such a large decay length, the
regime of unhindered transport spans several orders of
magnitude. The predicted radiative conductivity for small q
appears quite large compared to kinetic mechanisms. It is a
puzzle to reconcile this observation in lieu of other
mechanisms of heat transport in air.
While optically dense bulk media show a negligible EM

conductivity, photons can strongly contribute when con-
sidering slabs or interfaces [19–24,26–28]. To investigate
this, we consider a sheet filling the space −h ≤ z ≤ 0, with
vacuum outside (inset of Fig. 3). To simplify, let h ≪ L for
all ω, so that, for in-plane distance r ≫ h, we may assume
Aðr; r0Þ ¼ AðrÞ for both points inside the sheet. A ¼ 0
otherwise, because V I¼0 in vacuum, see Eq. (8). Assuming
uniform temperature along z, integration over z of Eq. (13)
yields a prefactor h. The parallel component of conduc-
tivity is

κðqÞ ¼ h
8πkB
q2

Z
∞

0

dωN ðω̃Þ½Aðq ¼ 0Þ − AðqÞ�; ð18Þ

with AðqÞ ¼ ð1=2πÞ R∞
l dr AðrÞrJ0ðqrÞ the 2D Fourier

transform of AðrÞ, with J0 the Bessel function of order
zero. As in bulk, κ in Eq. (18) is a nonnegative monoton-
ically decaying function of l.
We numerically compute AðrÞ from the dyadic Green’s

function of the sheet, using a plane wave decomposition as
for a planar cavity [27,50]. It encodes a variety of nontrivial
features, which we investigate for doped silicon and amor-
phous SiO2, ubiquitous in microelectronics. For Si, we use
the Drude model [51–55], εSiðωÞ ¼ ε∞ − ω2

p=½ωðωþ iγÞ�,
with ε∞ ¼ 11.7, ωp ¼ 3.06 × 1014 rad s−1, and γ ¼ 8.29 ×
1013 rad s−1 for the chosen p-type doping concentration of
1019 cm−1; theminimal decay length isL ≈ 2 μm. For SiO2,
the data for ω∈ ½12; 301� Trad s−1 is taken from Ref. [56];
the minimal decay length is L ≈ 0.5 μm.
Figure 3(a) depictsAðrÞ for h ¼ 50 nm, covering orders

of magnitude in r, to span the features on various scales.
While the bulk curves (dashed lines) decay exponentially

on the scale of L, the sheet solutions decay slowly.
Especially Si shows two distinct plateaus with approximate
scalings A ∼ r−1. We interpret these as manifestations of
the two traveling surface modes, spreading as r−1 in 2D
space, with decay lengths of roughly a millimeter and a
meter. Notably, at distances large compared to that decay
length, A does not decay exponentially, but with a power
law. We numerically found that the spectral Aðr;ωÞ
ultimately, for large r, scales as r−4 for any εðωÞ inves-
tigated [57], while, for the range shown, the integrated
curves in the graph show ∼r−3.5. This intriguing behavior
indicates the absence of an ultimate decay length.
For SiO2, some frequencies show pronounced plateaus in

Aðr;ωÞ, e.g., ω ¼ 176 Trad s−1, while they are absent for
others, e.g., ω ¼ 98 Trad s−1 [inset of Fig. 3(a)]. Thus, the
main graph of Fig. 3(a) shows no distinct plateaus.
Figure 3(b) shows the resulting conductivity κðqÞ using

cutoff l∈ ½2h; 10h� large compared to atomistic scales
[59,60]. For large q the conductivity is below the phononic

(a)

(b)

FIG. 3. (a) Conductivity kernel (T0 ¼ 300 K) of a nanosheet
(doped Si and SiO2, h ¼ 50 nm), as a function of in-plane
distance r. Dashed lines indicate the bulk results. Inset: spectral
kernel for two distinct frequencies for SiO2. (b) Conductivity as a
function of q. Dashed lines give the phononic contributions
[48,49]. Inset compares the spectra for different q to the one
obtained from the Boltzmann equation [19,20].
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contribution (shown by dashed lines), and strongly
increases with decreasing q, directly related to AðrÞ: the
regimes of surface waves of A ∼ r−1 cause steep increases
with nearly κ ∼ q−2, i.e., nearly unhindered transport. For
the two materials, the EM contribution becomes compa-
rable to the phononic one at scales of around 10 cm and a
few mm, respectively. The power law seen in Fig. 3(a),
A ∼ r−3.5, translates to κ ∼ q−0.5 for small q. [The men-
tioned behavior of Aðr;ωÞ ∼ r−4 yields κω ∼ logðqÞ for
small q.] Thus, in contrast to bulk, no q-independent
plateau of Fourier conduction seems to exist.
It is thus interesting to compare to the Boltzmann

equation [19,20]. The inset of Fig. 3(b) shows the spectral
conductivity for SiO2, for various q. Astonishingly, the
Boltzmann equation is very accurate for a range of fre-
quencies [where plateaus are seen in Aðr;ωÞ in Fig. 3(a)].
For other frequencies (e.g., ω ¼ 98 Trad s−1), it deviates
notably [61]. Naive use of the Boltzmann equation yields a
divergence for ω → 0 seen in the graph; we interpret this to
be due to the absence of the Fourier regime: for a given q,
our data and the Boltzmann equation agree down to a
certain ω (potentially corresponding to a decay length ∼q−1
of surface modes), below which they disagree. Our
q-dependent theory thus solidly justifies frequency cut-
offs or effective propagation lengths for the Boltzmann
approach [23,26,27].
While we presented applications to special cases, the

formalism presented here is general, and combined with the
various numerical schemes for computation of Green’s
functions [62], can deal with myriad setups, including, e.g.,
media in cavities [63], at interfaces [20], outside or inside
cylinders [63,64], or curved interfaces. Such a formalism is
needed to quantify radiative effects within media and
devices at nano- and microscale. Future work can inves-
tigate the relation to approaches via the Poynting vector
[24,25], nonlinear temperature profiles, as well as a deeper
analysis of the occurring surface modes.
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