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A proposal of the existence of an Anomalous phase (A phase) [Das et al., Phys. Rev. Lett. 131, 056202
(2023)] at the experimental range of moderate Landau-level-mixing strength has recently been made for the
5=2 state. We here report that the gapped A phase is generic to the sequence of spin-polarized fractional
quantum Hall states with filling fractions ν ¼ n=ðnm − 1Þ and ν ¼ 1 − n=ðnm − 1Þ, ðn ≥ 1; m ≥ 3Þ, that
exhausts almost all the observed states and also predicts some states in the second Landau level for GaAs
systems. Our proposed trial wave functions for all these states have remarkably high overlaps with the
corresponding exact ground states and can support non-Abelian quasiparticle excitations with charge
e=½2ðnm − 1Þ�. By analyzing edge modes, we predict experimentally verifiable thermal Hall conductance
2.5ðπ2k2BT=3hÞ for all the states in these sequences.
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The surprising discovery [1] of an even-denominator
fractional quantum Hall effect (FQHE) state 5=2 and
subsequent observations [2–7] of other odd- and even-
denominator states in the second Landau level (SLL) are
fascinating for the exotic electronic correlations. Following
the pioneering proposal of Moore and Read (MR) [8] for the
5=2 state, even-denominator FQHE states are believed to
host excitations of non-Abelian quasiparticles. This occurs
[9] owing to the Cooper pairing with inherent Z2 symmetry
amongst emergent composite fermions [10,11] arising due to
the interaction between electrons in the presence of a high
magnetic field. There have also been proposals in terms of the
particle-hole conjugate [12,13] of the MR Pfaffian state and
particle-hole symmetric [14,15] Pfaffian state as alternative
topological orders of the 5=2 state.
The odd-denominator observed states like 7=3, 8=3, 11=5,

and 14=5 are believed [16–20] to behave as Abelian FQHE
states. On the other hand, a generalization [21] ofMR theory
for the 5=2 state yielding a 2þ n=ðnþ 2Þ sequence of states
supporting quasiparticles as Zn parafermions [21] predicts
the non-Abelian 8=3 state. This sequence, however, does not
reproduce all the observed states in the SLL. Other gener-
alizations [22–24] ofMR theory fetch certain odd- and even-
denominator non-Abelian states as well. Both the Abelian
and non-Abelian FQHEstates are also proposed in the parton
model [25–27]. However, none of the different kinds of
topological orders predicted by these theories have yet been
confirmed in any experiment.
The validity of the proposed wave functions based on the

above mentioned theories is mainly tested numerically
[26–33] for the pure Coulomb interaction or at the best very
low strength of the Landau-level-mixing (LLM), κ, which
is quantified as the ratio of the Coulomb energy scale
and the cyclotron energy scale. Because the experiments
are typically performed [1–7,34–42] between 1 through

12 Tesla magnetic field for these FQHE states in GaAs
systems, the role of filled and empty Landau levels also
becomes important as κ becomes [43–46] moderately
higher in the range 0.7–2.5. Owing to the LLM [43–46],
not only the two-body pseudopotentials get renormalized,
but certain three-body pseudopotentials are also emerged,
and consequently the particle-hole symmetry no longer
becomes an exact symmetry in the SLL. Exact diagonal-
ization study with perturbatively obtained two-body and
three-body pseudopotentials [44] in the spherical geometry
[47] suggests [48] a topological phase transition between
the conventional phase and an Anomalous phase (A phase)
at κ ∼ 0.7 for the 5=2 state. The ground state at thisA phase
of 5=2 state is well described by a trial wave function [48],
which is nearly orthogonal to MR [8], the particle-hole
conjugate of MR [12,13], and particle-hole symmetric
Pfaffian [14,15] wave functions.
Here,we show, by calculating overlaps of the exact ground

states of the Hamiltonian consisting of LLM-corrected two-
body and three-body pseudopotentials in spherical geometry
for different values of κ, theA phase is generic [49] to all the
observed [1–7] FQHE states in the SLL. We propose trial
wave functions for all these FQHE states as a generalization
to the recently proposed trial wave function [48] for the 5=2
state in theA phase. These wave functions have remarkably
high overlapswith the corresponding exact ground states and
are argued to support non-Abelian quasiparticle excitations
aswell. TheA phase of all these FQHEstates is found to have
a positive finite charge gap in the thermodynamic limit. The
counting of low-lying edge states has been obtained by
calculating entanglement spectra (ES). The quasiparticle
charges corresponding to the proposed trial wave functions
have been found in the Chern-Simons formalism [50] for
our proposed sequences of filling factors ν ¼ n=ðnm − 1Þ,
ðn ≥ 1; m ≥ 3Þ, and 1 − ν in the SLL.We further predict that
all these FQHE states will provide a unique thermal Hall
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conductance 2.5G0 (G0 ¼ π2k2BT=3h) governed by two
(three) bosonic downstream edge modes for two (three)
filled Landau levels and one downstream (upstream)
Majorana edge mode for FQHE states ν (1 − ν).
As described in Ref. [48], the proposed wave function

for the ν ¼ 1=2 state in the SLL is interpreted as follows.
The composite bosons (CBs)—the bound state of an
electron with one unit of flux quantum—divide themselves
into two groups, and the CBs in each group are non-
interacting and condense while the CBs between two
groups repulse each other such that they feel zeros of
order 2 at each other’s position. In this Letter, we generalize
this in terms of dividing each group into a number of
sectors and fixing a number of zeros between a pair of CBs
belonging to two groups. Consider n fictitious sectors with
an equal number of CBs in each of the two groups. Next,
each CB of any sector of one group feels 2ðm − 2Þ zeros
and 2ðm − 1Þ zeros at the positions of the CBs of one of the
sectors and the remaining ðn − 1Þ sectors, respectively, in
the other group. This fixation of zeros leads to the
formation of FQHE states in the filling factor sequence

ν ¼ n
nm − 1

ð1Þ
and its particle-hole conjugate state at ν ¼ 1 − n=ðnm − 1Þ
for m ≥ 3 and n ≥ 1. The total angular momentum of the
corresponding wave function (dropping the ubiquitous
Gaussian factor [11,51])

ΨAðn;mÞ ¼
YN

i<j

ðzi − zjÞS
� Y

1≤k;l≤N=ð2nÞ

×

�Yn−1

α¼0

ðzkþαN=ð2nÞ − zlþN=2þαN=ð2nÞÞ2ðm−2Þ
�

×

�Yn−1

α≠β;0
ðzkþαN=ð2nÞ − zlþN=2þβN=ð2nÞÞ2ðm−1Þ

��

ð2Þ

that we propose for the A phase becomes M ¼ Nðν−1N −
1Þ=2 in the disk geometry implying the same “flux-shift”
(by 1) in the spherical geometry for all the FQHE states in
the SLL. Here S represents symmetrization with respect to
all N particle indices and the complex particle coordinates
zj ¼ ðxj − iyjÞ=l0 with l0 being the magnetic length. The
CBs form due to the attachment of one flux quantum with
each electron described by the Jastrow factor

Q
N
i<jðzi − zjÞ.

The indices α and β represent n sectors in both the
condensates of CBs. The wave function ΨAðn;mÞ does
not vanish even if up to macroscopic N=2 CBs of a group
coincide. In analogy to other known FQHE wave functions
[8,21] supporting non-Abelian quasiparticles having similar
properties (albeit for a finite number of particles), we believe
that ΨAðn;mÞ too will support non-Abelian quasiparticles.
The observed [2–4,6,7] principal sequence ν ¼ 1=2; 2=5;

3=8;… corresponds to m ¼ 3 and n ¼ 1; 2; 3;… respec-
tively in Eq. (1). Other observed [2–4,6,7] FQHE states in the
SLL are ν ¼ 1=3 (also 2=3) form ¼ 4 and n ¼ 1, 2=9 (also
7=9) form ¼ 5 and n ¼ 2, and 1=5 (also 4=5) form ¼ 6 and
n ¼ 1. Only ν ¼ 6=13 (in between two consecutive filling
factors, namely 1=2 and 2=5 of the principal sequence)
amongst observed [5,7] FQHE states does not fit in the
sequence (1), just as the 4=11 state [52,53] in the lowest
Landau level does not fit in the principal Jain sequence [10].
The effective Hamiltonian for the spin-polarized elec-

trons, including the effect of LLM [43,44] in the SLL, is
given by

ĤeffðκÞ ¼
X

λ odd

½Vð2Þ
λ þ κδVð2Þ

λ �
X

i<j

P̂ijðλÞ

þ
X

λ≥3
κVð3Þ

λ

X

i<j<k

P̂ijkðλÞ; ð3Þ

where Vð2Þ
λ represents the two-body bare Coulomb pseu-

dopotential in the SLL and δVð2Þ
λ is its correction due to the

LLM and Vð3Þ
λ is the emergent three-body pseudopotential

arising due to the LLM. Here P̂ijðλÞ and P̂ijkðλÞ are two-
and three-body projection operators, respectively, onto
pairs or triplets of electrons with relative angular momen-
tum λ. We exactly diagonalize Ĥeff in a spherical geometry
with limited pseudopotentials (see Ref. [54]) for the
observed FQHE states given by the sequences of states
as shown in Eq. (1) for finite systems of N electrons with
the corresponding number of flux quanta NΦ ¼ ν−1N − 1.
We then determine overlaps of the exact ground states when
found at the total angular momentum L ¼ 0 for different
values of κ: Oij ¼ hΨgsðκiÞjΨgsðκjÞi. As found in Ref. [48]
for the ν ¼ 1=2 state, we show (Fig. 1) that the A phase in
the SLL at the moderate regime of κ is generic to all the
observed FQHE states belonging to the sequence ν and
1 − ν in Eq. (1), viz, ν ¼ 2=5, 3=8, 1=3, 2=9, 1=5, 2=3, 7=9,
and 4=5. The exact ground states in the A phase are
orthogonal to the corresponding ground states at the low-κ

FIG. 1. Overlaps (shown as color map) Oij of the exact ground
states of Ĥeff in Eq. (3) at different filling factors ν observed in the
SLL with the system size mentioned as ðN;NΦÞ in each of the
panels. No overlap has been calculated in the gray zone as one of
the ground states is unquantized, i.e., the ground state is at L ≠ 0,
represented by the crossed marks.
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phase. These two phases are intermediated by a regime of
unquantized states.
We calculate [55] the charge excitation energy gap Δc

[56] for different pairs of N and NΦ for a given FQHE state
by taking the average of a single quasiparticle and single
quasihole excitation energies. Figure 2 shows the scaling of
Δc with 1=N for all the observed FQHE states belonging to
the sequences ν and 1 − ν. A thermodynamic extension of
this scaling indicates positive and finite excitation energies
of a pair of a quasiparticle and a quasihole. Therefore, all
these states in the A phase are quantized.
The value of charge gap shown in Fig. 2 in the

thermodynamic limit is mildly sensitive (as shown in the
Supplemental Material [55]) to the inclusion of three-body

Vð3Þ
9 pseudopotential correction [31]. However, this mild

effect could be adverse when the magnitude of the charge

gap is very small without the inclusion of Vð3Þ
9 . This is what

was obtained (as shown in the Supplemental Material [55])
for the 1=5 and 2=9 states as the thermodynamic gaps for
these states become negative, albeit small. Therefore, a
more accurate estimation of pseudopotentials (higher
orders in κ) is necessary to resolve the positivity of the
gap and also its increase in magnitude to rule out an outside
possibility of gaplessness.
We show (Fig. 3) the ES [57,58] for ν ¼ 1=2 (N ¼ 14

particles with flux, NΦ ¼ 27) and ν ¼ 2=5 (N ¼ 12 par-
ticles with flux, NΦ ¼ 29) in a moderate LLM strength of
κ ¼ 1.2 belonging to the A phase. The low-lying spectra
for these states in the A phase suggest that the sequence
counting of edge states, which appears as 1-1-2-2-3-3- � � �,
is the same for both the states. We have checked that this
sequence of edge states is irrespective of the filling factors
in the A phase. This sequence of edge counting, as
expected, is found to be independent of the total number

of particles as well as the number of particles in a particular
partition (hemisphere).
Using the Monte-Carlo method with the Metropolis

algorithm (see Ref. [11]), we calculate the overlaps of
the exact ground states of ν ¼ 2=5, 3=8, 1=3, 2=9, and 1=5
in the A phase with the proposed trial wave functions (2)
transformed into the form corresponding to the spherical
geometry. The overlaps for the 2=3, 7=9, and 4=5 states are
calculated [59] with the particle-hole conjugate form of the
exact ground states with the wave function in Eq. (2) for
their respective conjugate filling factors 1=3, 2=9, and 1=5.
All of our proposed wave functions in a general footing
have remarkably high overlaps (Fig. 4) with the correspond-
ing exact ground state wave functions for a range of κ.

FIG. 2. Charge gap Δc for different FQHE systems scaled with
1=N for different ν in the A phase.
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FIG. 3. (a) ES of ν ¼ 1=2 state in theA phase (κ ¼ 1.2) for flux
shift of NΦ ¼ 27 with an equal number of electrons NA ¼ NB ¼
7 in both the partitions A and B which are northern and southern
hemispheres respectively. Sum of the azimuthal components of
angular moments occupied by electrons in the A partition is LA

z ,
and ξ represents the entanglement energy in an arbitrary unit.
(b) Same as (a) but for an unequal number of electrons (NA ¼ 5
and NB ¼ 9) in two partitions. (c) Same as (a) but for ν ¼ 2=5
state with flux NΦ ¼ 29 and NA ¼ NB ¼ 6. (d) Same as (c) but
for an unequal number of particles in two partitions
(NA ¼ 4 and NB ¼ 8).

FIG. 4. Overlaps (with appropriate normalization) of the
proposed wave functions, ΨA in Eq. (2) with the exact ground
states, ΨgsðκÞ of the Hamiltonian, and ĤeffðκÞ in Eq. (3) for noted
ν and N at different values of κ in the corresponding regime of the
A phase.
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The FQHE states such as 1=3 and 1=5 in the SLL are
tagged as Abelian in literature [16–20]. However, the
numerical studies [16,17,20] are based on either zero or
very low κ where Laughlin wave functions have good
overlaps at their respective flux shifts of 3N − 3 and
5N − 5. We find that these wave functions have negligible
overlaps in the A phase at their respective fluxes, as shown
in the Supplemental Material [55]. In contrast, these two
states are also predicted to be non-Abelian characterized by
the wave function ΨA in Eq. (2) in the A phase.
The predicted flux shift here is 1 for all the FQHE states

given by ν in Eq. (1) as well as its particle-hole conjugate
filling factor 1 − ν. The only previously proposed wave
functions that have the same flux shift as that of ours are for
1=2 and 2=5 in Ref. [22] and the 3=8 states in Refs. [22,24].
However, the wave functions in Ref. [22] are not conven-
ient for implementing in numerical comparison with any
other wave functions. The vanishingly small overlap of
earlier proposed wave functions [24,60] for 3=8with that of
ours, suggests they belong to different topological classes,
despite having the same flux shift. In general, all the known
trial wave functions which are reasonable descriptions
[8,12–16,20–27] of FQHE states near κ ∼ 0 in the SLL
become irrelevant in the A phase.
Wealso show, as shown in theSupplementalMaterial [55],

the occurrence of FQHE states 4=11, 2=7, and 1=4 in theA
phase of the SLL. Our proposed wave functions (2) for these
states have excellent overlap with the corresponding exact
ground states. These FQHE states have not yet been
observed. Experimental findings of these states will further
confirm the validity of the general theory presented in this
Letter.
From the 2n-component structure of the proposed wave

function Eq. (2), we extract the topological properties of the
A phase through the low-energy effective Lagrangian
density [50] as

L ¼ −
1

4π
ϵαβγ

X2n

I;J¼1

KIJaIα∂βaJγ −
1

2π
ϵαβγ

X2n

I¼1

tIAα∂βaIγ: ð4Þ

Here aIα represents the Ith component of 2n-component
Chern-Simons gauge fields, Aα is the external electromag-
netic field, and ϵαβγ is the antisymmetric Levi-Cevita tensor.
The symmetric K matrix for the sequence of states given in
Eq. (1) can be read from the proposed wave function (2) as

K ¼
�
C M

M C

�
; ð5Þ

where C and M are n × n matrices given respectively by
Cij ¼ 1 andMij ¼ 2ðm − 1 − δijÞ þ 1. Further introducing
charge vector tT ¼ ð1; 1; 1;…Þ2n and quasiparticle vector
lT ¼ ð1; 0; 0;…Þ2n and following Ref. [50], we find topo-
logical properties such as filling factor ν ¼ tTK−1t ¼
n=ðnm − 1Þ and quasiparticle charge q ¼ elTK−1t ¼ e=

½2ðnm − 1Þ�. Half of the eigenvalues of the K-matrix are
positive, and the rest are negative. Therefore, n downstream
and n upstream quasiparticle or quasihole charge edge
modes will exist for the FQHE states with ν ¼ n=ðnm − 1Þ
as well as its particle-hole conjugate filling factor 1 − ν.
Owing to the presence of disorder, these quasihole charge
modes may be converted [61,62] into a neutral mode with
an addition of an additional quasiparticle in the downstream
mode. BecauseΨAðn;mÞ in Eq. (2) indicates that every CB
has choices of joining two available condensates which can
accommodate N=2 of them and remains noninteracting, it
has a hiddenZ2 symmetry [63]. Consequently, there will be
one neutral downstream (upstream) Majorana edge mode
carrying 0.5G0 thermal Hall conductance for the sequence
of filling factors ν (1 − ν). Figure 5 illustrates the possible
edge modes for ν ¼ 1=2, 2=5, 1=3, 2=3, and 3=8 in the
SLL. Considering two (three) completely filled Landau
levels for ν (1 − ν) and thereby two (three) downstream
bosonic edge modes, the total thermal Hall conductance
will be 2.5G0 irrespective of the FQHE states in the A
phase of the SLL. This counterintuitive feature in thermal
Hall conductance is, however, consistent with the identical
counting of edge states in ν ¼ 1=2 and 2=5 shown in Fig. 3.
In summary, we find a sequence (1) that exhausts [49] all

(except 6=13 as argued) of the observed FQHE states in the
SLL. These states are shown to be incompressible in the A
phase at the moderate regime of κ ∼ 1. Our proposed trial
wave functions (2) for all these states have very high
overlap with the corresponding exact ground states. The
characteristics of these wave functions support non-Abelian
quasiparticle excitations from their respective ground
states. Based on the proposed wave functions, we deter-
mine the possible edge modes and consequently predict
2.5G0 thermal Hall conductance for all these states.

FIG. 5. Schematic of edge modes for different filling factors ν
in the SLL. Arrow-headed solid double line, solid single line,
wavy line, and dashed line, respectively, represent electronic
mode, charged quasiparticle mode, charge neutral mode, and
Majorana mode. Each panel has two parts: (i) in the upper part,
edge modes are shown as per the K matrix in Eq. (5); (ii) in the
lower part, equivalent possibilities of modes due to disorder are
shown. Symbols ðe�; κTÞ represent charge and thermal Hall
conductivity in the unit of G0 carried by different modes
respectively. The values of e� for quasiparticle or quasihole
modes are shown beside the corresponding modes.
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Experimental confirmation on this prediction will place our
theory as themost relevant one as no other theory has thus far
predicted this unusual result. Besides, we have also found, as
shown in the Supplemental Material [55], the signature of
existence of the A phase in states like 4=11, 2=7, and 1=4
belonging to the proposed sequence in Eq. (1). Observations
of these states will further strengthen the validity of the
proposed general theory of FQHE in the SLL.
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