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The nonlinear Hall effect has attracted much attention due to the famous, widely adopted interpretation
in terms of the Berry curvature dipole in momentum space. Using ab initio Boltzmann transport equations,
we find a 60% enhancement in the nonlinear Hall effect of n-doped GeTe and its noticeable frequency
dependence, qualitatively different from the predictions based on the Berry curvature dipole. The origin of
these differences is long-lived valley polarization in the electron distribution arising from electron-phonon
scattering. Our findings await immediate experimental confirmation.
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The nonlinear Hall (NLH) effect [1–8] is a nonlinear
analog of the Hall effect that describes a transverse current
response to two electric fields. Unlike its linear counterpart,
the NLH effect occurs even in nonmagnetic systems with-
out an external magnetic field. The NLH effect is attracting
much attention due to its close connection to an intrinsic
geometric property of the electronic structure [2,9].
Applications such as probing electronic topology [10],
radio-frequency rectification [11], and terahertz photode-
tection [12–14] are under active investigation.
The standard interpretation of the intrinsic NLH effect

attributes the effect to the momentum-space dipole of the
Berry curvature [1,2,9] [Fig. 1(a)]. This “Berry curvature
dipole” picture underlies many experimental [4,5,8]
and theoretical [3,10,14] studies of the NLH effect. An
assumption key to this interpretation is the constant
relaxation time approximation (CRTA). In this approxima-
tion, both the NLH conductivity and the linear conductivity
are proportional to the relaxation time, a phenomenological
constant, with the prefactors being the Berry curvature di-
pole and the Drude weight, respectively. The ratio between
the two conductivities, which determines the current
responsivity, the figure of merit for rectification from the
NLH effect [12], has been considered a purely intrinsic
quantity determined only by the electronic structure [14].
In real systems, however, scattering does not simply

relax the driven carriers to the equilibrium as assumed in
the CRTA; its microscopic detail determines the non-
equilibrium distribution of the carriers. Consequently,
CRTA breaks the conservation of total charge [15] and
completely misses the emergent quasiconservation of
quantities such as total momentum [16–18], which man-
ifests as enhanced lifetimes of such quantities. For exam-
ple, CRTA does not distinguish forward and backward
scatterings, even though only the latter dissipate electric
current and contribute to the momentum lifetime [16].

The disparate timescales of the dynamics can be captured
only by solving the full Boltzmann transport equation
(BTE) which takes into account vertex corrections to the
conductivity [19]. Many studies have reported significant
vertex corrections to linear transport properties, including
the linear magnetoresistance [20] and the linear anomalous
Hall effect [21] of the Rashba Hamiltonian, and the linear
mobility [22–27] and spin lifetimes [28,29] of real materi-
als under electron-phonon scattering. However, it is still
unclear to what extent and through which long-lived
quantity vertex correction affects the intrinsic NLH effect.
To gain a physical understanding of the nature of the

vertex correction, one can use the relaxon method [30,31].
Relaxons are normal modes of the dynamics described by
BTE with well-defined lifetimes. The relaxon method has
been applied to study the quasiconservation of the total
momentum of phonons [31,32]. However, for electronic
transport, quantities other than the total momentum may

FIG. 1. Mechanisms of the intrinsic NLH effect. (a) Berry
curvature dipole, and (b) scattering-induced valley polarization.
The thickness of the wiggles represents the strength of the
scattering.
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become long-lived. Whether the relaxon method could be
utilized for electronic systems to investigate long-lived
quantities remains an open question. Although the electron
relaxon method was used to compute the linear conduc-
tivity [33], it has not been used for the NLH conductivity,
and, much more importantly, neither the analysis of each
relaxon mode and its the contribution to the linear or NLH
conductivity nor the physical intuition we obtain therefrom
has been reported.
In this Letter, we report a large contribution to the

intrinsic NLH effect that is not captured by the Berry
curvature dipole picture. By exactly solving the linearized
BTE for hole-doped GeTe, we find that the current
responsivity is up to 60% larger than that predicted by
the CRTA, and exhibits a sharp frequency dependence. To
uncover the origin of these results, we develop a theory of
electronic relaxons and find a novel structure in their eigen-
spectrum and eigenstates. Based on the relaxon analysis,
we attribute the enhancement and frequency dependence to
a long-lived difference in the carrier population between the
valleys or the minivalleys [Fig. 1(b)].
The BTE describes the time evolution of the electron

occupation at time t. We write fiðtÞ ¼ fð0Þi þ δfiðtÞ, where
fð0Þi is the equilibrium Fermi-Dirac occupation in the absence
of the external electric field and i the electron eigenstate
index specifying both the band and the momentum. In the
linear response regime for a uniform, monochromatic electric
field EðtÞ ¼ ReEeiωt, the BTE reads as [16]

δfiðtÞ ¼ Re
X

b¼x;y;z

Ebδfbi ðωÞeiωt;

iωδfbi ðωÞ ¼ e vbi f
ð0Þ0
i −

X
j

Sijδfbj ðωÞ: ð1Þ

Here, −e is the electron charge, vbi the band velocity, fð0Þ0i
the energy derivative of the Fermi-Dirac distribution, and S
the scattering matrix [Eq. (A2)]. Setting ω ¼ 0 gives the dc
BTE. The diagonal part of the scattering matrix is
the inverse of the single-particle lifetime: Sii ¼ τ−1i . In
the CRTA, S is approximated to be proportional to the
identity matrix, SCRTAij ¼ τ−1δij, where the inverse lifetime
τ−1 is a free parameter. In this work, we focus on the
electron-phonon scattering [24,34].
From the solution of the BTE, one can compute the

linear and nonlinear conductivities as

σabL ðωÞ ¼ −
e

VcellNk

X
i

vai δf
b
i ðωÞ;

σa;bcNLHðωÞ ¼
e2

2ℏVcellNk

X
d

ϵadc
X
i

Ωd
i δf

b
i ðωÞ; ð2Þ

where a, b, c, and d are Cartesian indices, Ωd
i the band

Berry curvature, ϵacd the Levi-Civita symbol, Vcell the

volume of the unit cell, andNk the number of k points in the
full k-point grid. (See Secs. A and F of the Supplemental
Material for details of the BTE formalism and computa-
tional details, respectively [35]).
We study the linear and nonlinear conductivities of

p-doped α-GeTe, a ferroelectric semiconductor with a
large Rashba-type band splitting [60]. Below the transition
temperature of 720 K, the Te atom shifts along the [111]
direction, which we choose to be the z axis, creating a
nonzero polarization. The broken inversion symmetry
allows the NLH response, and GeTe has been proposed
as a candidate material for terahertz photodetection using
the NLH effect [14]. GeTe is typically heavily p doped due
to the thermodynamically favorable Ge vacancies [61].
Hole concentrations as low as 5 × 1019 cm−3 or below
have been realized by additional doping [62–64]. Doping
was treated using the rigid-band approximation, and the
free-carrier screening to electron-phonon coupling was
included [65].
We consider the in-plane linear conductivity σxxL and the

σz;xxNLH component of the NLH conductivity, unless otherwise
stated (see Fig. S1 for the crystal structure and the field and
current directions). The linear conductivity is isotropic
along the in-plane directions: σxxL ¼ σyyL ≠ σzzL . All non-
zero components of the NLH conductivity are related by
symmetry: σz;xxNLH ¼ σz;yyNLH ¼ −σx;xzNLH ¼ −σy;yzNLH. We focus on
the current responsivity, the figure of merit for terahertz
rectification [12]. For a sample with size Lx × Ly × Lz, the
current responsivity R is [12]

R ¼ JzNLHLxLy

JxLE
xLxLyLz

¼ 1

Lz

σz;xxNLH

σxxL
: ð3Þ

Figure 2(a) shows that for a wide range of carrier
densities, the current responsivity calculated with BTE is
considerably larger than that obtained in the CRTA.
Figure 2(b) shows that the ac responsivity in the terahertz
regime is sharply peaked at zero frequency and rapidly

FIG. 2. (a) Hole-density dependence, and (b) frequency
dependence of the current responsivity multiplied by the sample
length Lz for GeTe, which equals the ratio of the NLH conduc-
tivity to the linear conductivity [Eq. (3)]. All the results shown
in this and the following figures were obtained at hole density
nh ¼ 1019 cm−3 and temperature T ¼ 300 K unless other-
wise noted.
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drops at higher frequencies, while the responsivity in the
CRTA is frequency independent. In Sec. C of the Supple-
mental Material [35], we show that this feature is present
for a wide range of temperatures. These findings demon-
strate a substantial vertex correction to the NLH effect, and
suggest that an important mechanism for the intrinsic NLH
effect beyond the conventional Berry curvature dipole
picture exists.
To uncover the mechanism underlying the large increase

and frequency dependence of the NLH conductivity, we
generalize the relaxon decomposition, originally developed
for phonon transport [30,31], to the case of electrons.
Relaxons are normal modes of the BTE, which can be
obtained via the eigenmodes of the scattering matrix S.
Since S is not symmetric, one first defines the sym-
metrized scattering matrix S̃ by applying a similarity
transformation [33]:

S̃ij ¼ Sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð0Þj

�
1 − fð0Þj

�

fð0Þi

�
1 − fð0Þi

�

vuuut : ð4Þ

This matrix is real valued, symmetric, and positive semi-
definite, and has the same set of eigenvalues as S. (We note
that other types of symmetric scattering matrices, which are
not related to S by similarity transformations, have also
been used [66–68].) We diagonalize S̃ as

X
j

S̃ijΘjp ¼ ΓpΘip; ð5Þ

with the normalization condition ðΘ⊺ΘÞpp0 ¼ VcellNkδpp0 .
Each column Θip describes a relaxon mode whose relax-
ation rate or inverse lifetime is Γp. Each eigenvalue Γ−1

p is a
non-negative, physical lifetime of a collective mode. One of
the relaxons has a zero eigenvalue and corresponds to the
change of the chemical potential [Eq. (A21)]; the remaining
relaxons have positive eigenvalues.
By writing the stationary-state electron distribution in the

relaxon basis, one can decompose the conductivities into
the contributions of individual relaxons:

ReσabL ðωÞ ¼ e2κ
X
p

ṽapṽbp
Γp

Γ2
p þ ω2

;

Reσa;bcNLHðωÞ ¼ −
e3κ
2ℏ

X
d

ϵadc
X
p

Ω̃d
pṽbp

Γp

Γ2
p þ ω2

: ð6Þ

Here, κ is the charge compressibility, and ṽap and Ω̃a
p are the

effective velocity and Berry curvature of the relaxons,
respectively, which are the averages of the quantities over
the electron eigenstates weighted by the relaxon eigenvec-
tor [Eqs. (A24) and (A25)]. The charge compressibility can
be understood as the charge carried by a single relaxon,

which is a collective excitation spanning the whole Fermi
surface. For heat transport by phonon relaxons, the charge
compressibility is replaced with the heat capacity [31].
Figure 3 shows the contribution of each relaxon to the

linear and NLH conductivities. The relaxon spectrum has
two parts, discrete levels and a continuum, separated by the
inverse of τmax ¼ maxi τi, the longest single-particle life-
time. Relaxons with lifetimes longer than τmax (Γ−1

p > τmax)
display a discrete spectrum, while those with lifetimes
shorter than τmax (Γ−1

p < τmax) form a continuum. This
spectral structure of relaxons resembles that of optical
excitations of a hydrogen atom or of semiconductors
(discrete excitons and a continuum) [69], although the
former corresponds to inverse lifetimes while the latter
correspond to energies. Also, we find that the effective
velocity and Berry curvature scale as Oð1Þ and Oð1= ffiffiffiffiffiffi

Nk
p Þ

for the discrete and continuum relaxons, respectively. This
scaling, combined with the Oð1Þ (OðNkÞ) scaling of the
number of discrete (continuum) relaxons and the Oð1Þ
scaling of the relaxon lifetimes, makes the sum over
relaxons in Eq. (6) convergent. As one increases the density
of the k-point grid, the cumulative contribution remains
discontinuous in the discrete regime and converges to a
smooth curve in the continuum regime. See Sec. B and
Fig. S2 of the Supplemental Material for details [35].
In Fig. 3, among the contributions of more than 10 000

relaxons to the conductivities, those of the two discrete,
long-lived relaxons labeled “valley relaxon” and “mini-
valley relaxon” stand out. Remarkably, although these two
relaxons contribute only 4% to the linear conductivity, they
account for 37% of the NLH conductivity. We have named
these relaxons based on their eigenstates shown in Fig. 4.
The valley relaxon has a strong valley-polarizing character,
describing the transfer of hole carriers from one valley to
another valley. Similarly, the minivalley relaxon has a
minivalley-polarizing character, in which “minivalley”
refers to each of the two peaks of the Mexican-hat-like
band structure within a single valley [Fig. 4(b)].
The eigenvectors of the valley and minivalley relaxons

are peaked around the valence band maxima, with the same

FIG. 3. Relaxon decomposition of the (a) linear conductivity
and (b) NLH conductivity of GeTe. We only show individual
contributions whose absolute value is greater than 10−3%.
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sign within a (mini)valley and the opposite signs between
different (mini)valleys. Owing to the quadratic dispersion,
the band velocities around the valence band maxima are
small and approximately antisymmetric in wave vector
space within a (mini)valley [Figs. 4(c) and 4(d)]. Hence, the
effective velocity of the (mini)valley relaxons is low. In
contrast, the Berry curvature is large near the valence band
maxima and has the same parity in momentum space as the
relaxon eigenvector [Figs. 4(e) and 4(f)]. Thus, both the
valley and minivalley relaxons strongly couple to the Berry
curvature, resulting in their large contribution to the NLH
effect. This valley-polarization induced NLH effect will be
present in all inversion-asymmetric materials with multiple
valleys, such as the two-dimensional transition metal
dichalcogenides [70].
The frequency dependence of the current responsitivity

[Fig. 2(b)] can be understood from the long lifetimes of the
valley-polarizing relaxons, which originate from the weak

intervalley scattering. Each relaxon gives a Drude-like
contribution to the ac conductivity: a Lorentzian with a
width Γp. Since the long-lived valley and minivalley
relaxons contribute much more to the NLH conductivity
than to the linear conductivity, the ac spectrum of the
former is more sharply peaked at ω ¼ 0 than the latter.
Hence, the current responsivity rapidly decays at higher
frequencies as the contribution from the valley-polarizing
relaxons decays faster than the remainder. Terahertz mea-
surements could experimentally confirm this prediction.
It may be surprising that the valley and minivalley

relaxons are highly populated in the steady state under a
uniform electric field, since a pure valley polarization by
itself does not generate electric currents or couple to the
electric field. In fact, the valley polarization vanishes in
the CRTA because δf becomes a k derivative of the
equilibrium occupation, whose integral over a valley is
zero. The emergence of valley polarization is a result of the
interplay of multiple intervalley scattering channels, as
shown in a study of twisted bilayer graphene using a model
with two circular Fermi surfaces and scattering matrix
elements that vary sinusoidally with the electron wave
vector direction [71].
To study which phonon modes contribute to the valley

polarization, we propose and apply the “scattering diag-
nostics” method. We solve a modified BTE in which
phonons with momentum q are excluded in the construc-
tion of the scattering matrix and see the change in conduc-
tivity, Δqσ, as we add back the missing scattering, i.e.,
recover the conductivity σ (see Sec. D of the Supplemental
Material for details [35]). A negative value of Δqσ=σ
indicates that the scattering tends to suppress the conduc-
tivity, while a positive value indicates that the scattering
enhances the conductivity, which would be an uncommon
situation.
Figure 5 shows the scattering diagnostics for q points

along the field direction. For the linear conductivity, Δqσ is
always negative, indicating that all scattering is resistive.
In contrast, for the NLH effect, phonons with momentum
close to but below the intervalley distance qintervalley
increase the NLH conductivity. This behavior can be
understood in terms of a four-state model (Fig. S6), which

FIG. 4. Relaxon eigenvectors, velocity, and Berry curvature
of GeTe. (a),(b) Relaxon eigenvector [Θip in Eq. (5)]. (c),(d)
Electron band velocity. (e),(f) Electron Berry curvature, along the
solid black line in the inset of (a),(b). Inset: momentum-space
distribution of the relaxon at the highest-energy valence band.
The gray shading indicates the xy plane.

FIG. 5. Scattering diagnostics for GeTe along q ¼ ðqx; 0; 0Þ.
qintervalley is the intervalley distance [Fig. 4(a)].
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shows that large valley polarization can occur when the
intervalley scattering rate is highly momentum dependent.
For GeTe, the intervalley scatterings with momentum
smaller than the intervalley distance, q ≲ qintervalley, are
stronger than those with momentum larger than the
intervalley distance, q≳ qintervalley. Scattering by phonons
with q ≲ qintervalley (q≳ qintervalley) strengthens (weakens)
this momentum dependence, thus enhancing (suppressing)
the valley polarization and the NLH effect.
A similar analysis could be performed for the minivalley

relaxons, based on the momentum dependence of the
interminivalley scattering. The presence of minivalleys is
a result of the Mexican-hat-like band structure of GeTe. We
expect that the minivalley relaxon will also appear in other
materials with a similar dispersion, such as the two-
dimensional chalcogenides GaS, GaSe, and InSe [72–74].
Scattering-induced valley polarization is a general phe-

nomenon that occurs in many polar and nonpolar semi-
conductors that have multiple valleys at momenta which
are not time-reversal invariant (see Sec. E of the Supple-
mental Material for precise symmetry constraints [35]).
The valley polarizability, valley polarization per current, of
four common semiconductors, diamond, silicon, GaP, and
AlSb, are all of similar order of magnitude to that of
GeTe (Fig. S7).
Recently, Ref. [7] reported that the vertex correction to

the intrinsic NLH conductivity is negligible for the toy
model of two-dimensional Dirac electrons with a single
valley and an isotropic scattering mechanism. Our first-
principles study suggests that real materials would instead
exhibit a substantial vertex correction when the detailed
electronic structure with multiple (mini)valleys and
momentum-dependent electron-phonon scattering is taken
into account. Finding materials with multiple valleys and
momentum-dependent scattering represents a new design
principle for maximizing NLH efficiency.
The scattering-induced valley polarization affects not

only the NLH effect, but also all observables that couple to
the valley degree of freedom. Such observables include
the spin polarization [75], orbital magnetization [76],
and circular dichroism [77]. The interplay of the valley-
polarizing relaxons with these degrees of freedom is an
interesting direction for valleytronics research [78]. For
example, circularly polarized luminescence [79,80] could
be used to directly measure the valley-polarizing relaxons.
Moreover, our work shows that solving the full BTE

and performing the relaxon analysis is a computationally
tractable way to reveal emergent long-lived quantities in
electronic dynamics and study how they affect the non-
linear responses. By combining the relaxon analysis and
the theories of nonlinear transport including band-
geometric effects [7,9,81–83] using ab initio scattering
matrices [84,85], one can reveal novel response properties
of real materials beyond the RTA, as demonstrated in this
work for the NLH effect.
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[74] W. Li, S. Poncé, and F. Giustino, Dimensional crossover in
the carrier mobility of two-dimensional semiconductors:
The case of InSe, Nano Lett. 19, 1774 (2019).

[75] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled
spin and valley physics in monolayers of MoS2 and other
group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802
(2012).

[76] D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in
graphene: Magnetic moment and topological transport,
Phys. Rev. Lett. 99, 236809 (2007).

[77] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelec-
tronics from inversion symmetry breaking, Phys. Rev. B 77,
235406 (2008).

[78] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.
Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials,
Nat. Rev. Mater. 1, 1 (2016).

[79] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley
polarization in monolayer MoS2 by optical helicity, Nat.
Nanotechnol. 7, 494 (2012).

[80] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley
polarization in MoS2 monolayers by optical pumping, Nat.
Nanotechnol. 7, 490 (2012).

[81] D. E. Parker, T. Morimoto, J. Orenstein, and J. E. Moore,
Diagrammatic approach to nonlinear optical response with
application to Weyl semimetals, Phys. Rev. B 99, 045121
(2019).

[82] T. Holder, D. Kaplan, and B. Yan, Consequences of time-
reversal-symmetry breaking in the light-matter interaction:
Berry curvature, quantum metric, and diabatic motion, Phys.
Rev. Res. 2, 033100 (2020).

[83] J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath,
Riemannian geometry of resonant optical responses, Nat.
Phys. 18, 290 (2022).
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