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We show that the conservation of the valley density in multivalley insulators is broken in an unexpected
way by the electric field that drives the valley Hall effect. This implies that time-reversal-invariant fully
gapped insulators, in which no bulk or edge state crosses the Fermi level, can support a valley Hall current
in the bulk and yet show no valley density accumulation at the edges. Thus, the valley Hall effect cannot be
observed in such systems. If the system is not fully gapped then valley density accumulation at the edges is
possible. The accumulation has no contribution from undergap states and can be expressed as a Fermi
surface average, for which we derive an explicit formula. We demonstrate the theory by calculating the
valley density accumulations in an archetypical valley-Hall insulator: a gapped graphene nanoribbon.
Surprisingly, we discover that a net valley density polarization is dynamically generated for certain edge
terminations.
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Introduction.—The valley Hall effect (VHE) in non-
topological systems has recently stirred considerable con-
troversy [1–9]. When the band structure features two
valleys with a nonvanishing Berry curvature, electrons
skew in the direction orthogonal to the applied electric
field, even without a magnetic field. However, since the
system is not topological, electrons from the two valleys
skew in opposite directions giving rise to a zero (charge)
Hall current but a finite valley Hall current jvðr; tÞ. This is
defined as the difference between charge currents of
electrons originating in opposite valleys. When this current
hits the edge of the system, a valley density nvðr; tÞ (or,
more physically, orbital magnetization [10]), is expected to
accumulate at its boundaries. This assumes that the valley
density obeys a standard continuity equation [5,6]. This
seems a reasonable assumption: the two valleys are well
separated in momentum space, up to the point that they
could ideally be taken as completely disconnected.
Some authors [1,6] went further and claimed that even a

fully gapped nontopological insulator such as graphene
aligned with hexagonal boron nitride (hBN) [3,4] can
exhibit nonlocal charge transport mediated by transverse
bulk undergap valley currents. The authors of Ref. [6]
argued that, at finite temperature, the valley-density

accumulation could drive a “squeezed edge current”
(parallel to the edges) in apparent agreement with experi-
ment [2]. However, other authors [7–9] found from micro-
scopic calculations no valley density accumulation or edge
current in the simple graphene/hBN model. In the case of a
fully gapped insulator, in which no bulk or edge state
crosses the Fermi level, this leaves us with the following
puzzle: on one hand, the electric field drives a finite
dissipationless valley Hall current in the bulk; on the
other hand, time reversal symmetry implies that a valley
density accumulation—a time-reversal-odd quantity—
cannot appear in response to an electric field, unless there
is dissipation, which is impossible with no states at the
Fermi level. So where did the valley current go?
In this Letter we solve the puzzle by observing that

valley density does not satisfy a conventional continuity
equation when an electric field is present. The reason is that
the electric field breaks the conservation of crystal momen-
tum and therefore of valley number, which depends
explicitly on it. As a result, the bulk valley current is
internally short-circuited as electrons flow from one valley
to the other (and thus switch the sign of the Berry
curvature) under the action of the very same electric field
that drives the valley Hall current in the first instance. This
process is schematically shown in Fig. 1.
Our results imply that in a (i) time-reversal invariant

(ii) fully gapped insulator, as defined above, the undergap
valley current cannot produce a valley density accumu-
lation at the edge. This holds irrespective of the presence or
absence of spin-orbit coupling as long as the two conditions
above are met and applies equally well to systems based on
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graphene or transition metal dichalcogenides. This makes
observing the VHE impossible in such systems unless, e.g.,
the valley degeneracy is lifted [11–13] or carriers are
selectively injected into a single valley [14]. In these cases,
an electric (not valley) charge density is detected due to a
nonzero net anomalous Hall effect. This is distinct from the
VHE that was originally discussed in Refs. [1–3] and for
which the controversy exists. Our result also implies that
the nonlocal transport detected in Refs. [1,15–18] must
have been caused by partially occupied bulk or edge bands.
In metallic systems, which support a Fermi surface, our

predictions are quite different from those of the conven-
tional theory which assumes valley number conservation.
In particular, in our theory the accumulation depends on the
form of the electronic wave functions near the edge. The
length over which it occurs is not related to the carrier
diffusion length as in, e.g., Ref. [5], but reflects the much
shorter localization length of edge states, as observed in
some experiments [19], or the Fermi wavelength of bulk
states. Perhaps the most important result of this study is that
valley density of equal sign can be generated on both edges
simultaneously [20].
Summary of main ideas.—We consider a generic system

in the shape of a strip of finite width that is indefinitely
extended along the x axis. As we show below, the
continuity equation satisfied by the valley density is

∂tnvðy; tÞ þ ∂yj
y
vðy; tÞ ¼ −e2EðtÞ

X
k

SðkÞ∂kfkðyÞ; ð1Þ

where the electric field is in the x direction, which is
parallel to the edge, and the valley current is in the y

direction, perpendicular to the edge. Edges are chosen to be
parallel to one of the vectors connecting the two valleys in
the Brillouin zone of the infinite system. One such vector
(one of six) is shown in Fig. 1(b) with a red arrow. We call
kx its direction in momentum space and x in real space. In a
strip, kx remains a good quantum number and serves as
Bloch momentum in the one-dimensional Brillouin zone.
For brevity, in what follows we will drop subscript “x” on
kx. The electronic states (in the absence of the electric field)
have the form ψk;nðx; yÞ ¼ eikxuk;nðx; yÞ=

ffiffiffiffiffiffi
2π

p
, where n is

the band index. The sum over k in Eq. (1) stands forR
dk=ð2πÞ. The mixed electronic distribution fkðyÞ ¼

a−1
R
a
0 dx

P
n fk;njuk;nðx; yÞj2 is defined in terms of the

electronic wave functions and the occupations of the
corresponding states fk;n, with the integral taken over
one period a in the x direction. SðkÞ is a “valley charge”
function (odd under time reversal), which is a smooth
periodic function of k in the Brillouin zone. It assigns
number þ1 to states around one valley and −1 to states
around the other valley. The valley density operator is
n̂vðrÞ≡ −ðe=2ÞPjfSðk̂jÞ; δðr − r̂jÞg, where r̂j and k̂j
are the position and Bloch momentum operator (along
the edge) of the jth electron, respectively, and
fÂ; B̂g≡ ðÂ B̂þB̂ ÂÞ. The valley current density is
ĵvðrÞ≡ −ðe=4ÞPjfSðk̂jÞ; fv̂j; δðr − r̂jÞgg, where v̂j is

the velocity operator. Since k̂ is conserved, n̂v and ĵvðrÞ
obey a conventional continuity equation in the absence of
the electric field.
As shown below, in a fully gapped time-reversal invari-

ant insulator, in which no edge or bulk state crosses the
Fermi level, and at zero temperature, the right-hand side of
Eq. (1) completely cancels the contribution due to the
current on the left-hand side. Thus, the valley density
accumulation vanishes, even though there is a finite valley
current in the bulk. In all other cases the cancellation is not
exact. The correct equation for the density accumulation
rate in the absence of relaxation processes is then
∂tnvðy; tÞ ¼ −QsðyÞ, where the source term

QsðyÞ ¼
e2E
a

Z
a

0

dx
X
k;n

ð∂kfk;nÞSðkÞjuk;nðx; yÞj2; ð2Þ

is a Fermi surface property. Note that QsðyÞ cannot be
written, in general, as the divergence of a current. In fact,
this is only possible if its integral across the strip vanishes,
which implies that density accumulates at one edge and
depletes at the other [21]. However, if the width of the strip
is macroscopically large, the source term is localized on the
edges. One can then define the “effective current” Is,
obtained by integrating Eq. (2) across a given edge, that
feeds the valley number accumulation thereat. It can be split
as Is ¼ Ies þ Ibs , where Ies ¼ e2E

P
k;e ð∂kfk;eÞSðkÞ is the

contribution of the edge states. Here, the sum over e is that

(b)

(a)

FIG. 1. Panel (a): The cyclic flow of electrons (yellow arrows)
in the one-dimensional Brillouin zone of a ribbon subject to
electric field E (pink arrow). The valley charge changes sign
whenever the electron crosses the boundaries between the red and
green regions (kx ¼ 0;�π). Each electron performs half the cycle
as a “left-valley electron” and half as a “right-valley electron.”
Also shown are the Berry curvature hot spots with a positive
(negative) value near K (K0). Because of opposite Berry curva-
tures in the two valleys, the result is a steady valley Hall current.
However, in a fully gapped insulator, at the end of the cycle each
electron returns to its initial state, thus no valley redistribution
occurs. Panel (b): Two examples (blue and yellow arrows) of a
similar flow in the two-dimensional Brillouin zone of the infinite
system.
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over the edge states. The contribution of the bulk states, Ibs ,
can be obtained in terms of the probability amplitude for the
propagating Bloch waves to scatter off the edge [see Eq. (6)
below]. Once Is is known, the valley number accumulation
can be estimated as Isτtr, where τtr is the intra- or
intervalley momentum relaxation time for the bulk or edge
states’ contribution, respectively.
Anomalous continuity equation.—We consider a 2D

crystal periodic in the x direction with period a ¼ 1 and
with the edges positioned at y ¼ 0 and y ¼ −W. A uniform
electric field of magnitude E oscillating at frequency ω is
applied along the x direction. For conciseness, hereafter we
set ℏ ¼ 1. Thus the conductance quantum e2=h equals
e2=ð2πÞ, where e is the electron charge. From the Kubo
formula [23,24], the y component of the valley current
(averaged over x) is [25]

jyvðy;ωÞ ¼ iEe2
X
k;n;n0

Z
y

0

dy0ðεk;n − εk;n0 Þ

× SðkÞLk;nn0 ðωÞWk;nn0 ðy0ÞAk;n0n; ð3Þ

and the valley density (also averaged over x)

nvðy;ωÞ ¼ −
iEe2

ωþ i0

X
k;n

ð∂kfk;nÞSðkÞWk;nnðyÞ

− Ee2
X
k;n;n0

SðkÞLk;nn0 ðωÞWk;nn0 ðyÞAk;n0n; ð4Þ

where Lk;nn0 ðωÞ≡ ðfk;n − fk;n0 Þ=ðωþ εk;n − εk;n0 þ i0Þ
is the usual Lindhard factor [24], Wk;nn0 ðyÞ≡R
1
0 dx u†k;nðx; yÞuk;n0 ðx; yÞ, and Ak;n0n ¼

R
1
0 dx

R
0
−W dy ×

u†k;n0 ðx;yÞi∂kuk;nðx;yÞ is the Berry connection. The
Fourier transform of Eq. (1) follows directly [25] from
Eqs. (3) and (4):

−iωnvðy;ωÞ þ ∂yj
y
vðy;ωÞ ¼ −e2E

X
k

SðkÞ∂kfkðyÞ: ð5Þ

The vanishing of valley density accumulation.—Let us
first assume that the system is a time-reversal invariant fully
gapped insulator, such that no bulk or edge state crosses the
Fermi level. The first term on the right-hand side of Eq. (4)
vanishes because ∂kfk;n ¼ 0, since no band crosses the
Fermi level. Because of time-reversal symmetry, the second
line on the right-hand side of Eq. (4) is proportional to ω
[25], so the valley density accumulation vanishes for a static
electric field. This result implies that ∂yj

y
vðyÞ can be

different from zero—as it must necessarily be, since the
valley Hall current is finite in the bulk but vanishes at the
edges—yet this finite divergence does not cause any
density change at the edge or anywhere else. The resolution
of this paradox is provided by the anomalous term on the
right-hand side of Eq. (1) which exactly matches the

divergence term on the left-hand side when the system is
fully gapped.
The source of valley density.—Let us now consider the

case in which the system is not fully gapped and some
states cross the Fermi level. Then the cancellation between
the anomalous term and divergence of the current is not
perfect. Indeed, the first term on the right-hand side of
Eq. (4) causes the density to grow at a constant rate, leading
to a breakdown of linear response theory unless a limiting
momentum relaxation mechanism is taken into account.
The Fermi surface term, obtained by multiplying Eq. (4) by
−iω and taking the ω → 0 limit, is the “source term”QsðyÞ
in Eq. (2). It receives contributions from both bulk and edge
states, both decaying away from the edge, the latter
exponentially and the former oscillating at half the
Fermi wavelength. As discussed above, the integral of
QsðyÞ over y across a single edge can be interpreted as an
effective current Is that feeds the density accumulation
thereat. The contribution of bulk states to Is is (at y ¼ 0)

Ibs ¼ −2e2E
X

λ;k;p>0

∂kfλk;pIm

�½vλk;p�†vλk;−pRλðk; pÞ
pþ i0

�
; ð6Þ

where momentum integration is restricted to the valley with
valley number þ1, p is momentum in the y direction
measured from the valley bottom, vλk;p are envelope
amplitudes of propagating stationary states, labeled by
index λ, Rλðk; pÞ is the reflection probability amplitude
(jRλðk; pÞj ¼ 1) (see [25] for details).
Example: “gapped graphene.”—To illustrate the general

theory developed above, we calculate the valley Hall
current and valley density accumulation rate for a nano-
ribbon of “gapped graphene”—a model system that cap-
tures some aspects of monolayer graphene on a gap-
inducing hBN substrate. For the nanoribbon we consider
two terminations: (a) zigzag boundaries on both edges
[Fig. 2(a)] and (b) a zigzag and a bearded edge [Fig. 2(c)].
Each unit cell, labeled by an integer l, containsN horizontal
rows, each labeled by an integer m. Each row contains two
atoms of sublattices A and B as shown in Fig. 2(a), except
the edge rows, where one atom may be missing as shown in
Fig. 2(c). The two sublattices, A and B, have different on-
site potentials �Δ. Electrons are assumed to hop only
between nearest neighbors. We neglect spin-orbit interac-
tion and therefore consider spinless electrons. The y
coordinate will take integer values to indicate the row
and half-integer values to mark the position halfway
between the rows.
The band structures for the two terminations, shown in

Figs. 2(b) and 2(d), respectively, feature two bulk bands
separated by a gap equal to 2jΔj with minima at
k ¼ �2π=3. These points define the two valleys in the
one-dimensional Brillouin zone. The blue lines show bands
of edge states.
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Our main results are presented in Fig. 3. For a Fermi
energy in the gap (εF ¼ 0) and at zero temperature, we find
that nvðm; 0Þ ¼ 0 for either termination, consistent with the
absence of states at the Fermi level. At the same time
jyvðmþ 1=2; 0Þ ¼ −Ee2 · signðΔÞ=ð2πÞ þOðΔ=tÞ for 1 ≤
m ≤ N − 1 as shown in panels (a) and (b), blue line: this is
the undergap current associated with the nearly-quantized
Hall conductance (the actual value −0.9 deviates from the
ideal quantized value −1 due to the finite bandwidth of the
model) [25].
When the system is doped, the current distributions differ

dramatically for the two terminations, as shown by the red
lines in Figs. 3(a) and 3(b). In the case of the double zigzag
termination the current shows a linear variation across the
ribbon [red line in (a)], changing sign about the center of
the ribbon. This is contrary to our intuition, which would
suggest an approximately constant current in the bulk. Of
greater physical interest, however, is the valley density
accumulation rate shown in Fig. 3(c). There is a significant
cancellation between −∂yj

y
v (green line) and the noncon-

servation term (black line) at the edges. Their sum results in
a density accumulation rate displaying oscillations (red
dots) on the scale of half the Fermi wavelength and two
spikes of equal signs at the edges. The fact that the
accumulation rate does not integrate to zero is the result
of the anomaly on the right-hand side of Eq. (1): valley
number is pumped from one valley into the other via a

partially filled band of edge states connecting the two
[upper blue line in Fig. 2(b)]. This opens an intriguing
possibility of generating a net valley density polarization by
purely electrical means, as opposed to the standard optical
methods. Note, however, that the form of valley density
accumulation rate cannot be predicted from the valley Hall
current alone and depends on the boundary conditions.
Because valley number and orbital magnetic moment are
closely related [10], the same effect should emerge for
orbital magnetization, as was indeed found in Ref. [28].
The zigzagþ bearded termination presents us with a

more familiar scenario. Figure 3(b) shows that the valley
Hall current is approximately constant [−0.55 in units of
e2E=ð2πÞ at εF ¼ 0.3t] in the bulk. At the same time the
valley density accumulation rate [panel (d)] has spikes of
opposite signs on the two edges (red dots). In this case,
valley density is transported from one edge to the other. The
reason for the overall valley number conservation is, in
contrast to the previous example, absence of partially filled
bands connecting the two valleys.
Conclusion.—The modified continuity equation (1)

allows us to explain how a nonvanishing undergap valley
current can coexist with a vanishing valley density accu-
mulation in a fully gapped nontopological time-reversal-
invariant system with perfectly degenerate valleys. Any

(a) (b)

(c) (d)

FIG. 2. Panel (a) and (c): Gapped graphene nanoribbon with
two zigzag edges and a zigzag and a bearded edge (at the top),
respectively. Red (blue) discs signify atoms of the A (B)
sublattice. Panel (b) and (d): Band structures of nanoribbons
of panels (a) and (c), respectively, for N ¼ 20 and Δ ¼ 0.2t.

(a) (b)

(c) (d)

FIG. 3. Panel (a): Gapped graphene nanoribbon with zigzag
edges: the blue dashed (red solid) line shows the valley Hall
current as a function of position at Fermi energy εF ¼ 0
(εF ¼ 0.3t). Panel (b): Same as in (a) for a nanoribbon with
one zigzag and one bearded edge. Panel (c): Contribution to the
valley density accumulation rate from the valley Hall current
(green), from the nonconservation term (black), and their sum,
i.e., the total accumulation rate (red dotted), in the nanoribbon
with zigzag edges. Panel (d): Same as in (c) for the nanoribbon
with one zigzag and one bearded edge. In all plots N ¼ 100,
Δ ¼ 0.1t. In plots (c) and (d) εF ¼ 0.3t.

PHYSICAL REVIEW LETTERS 132, 106301 (2024)

106301-4



valley density accumulation requires the existence of states
at the Fermi level and furthermore it is a dissipative process
that requires a scattering mechanism to reach a steady state.
We have provided closed expressions for calculating valley
density accumulation rates on the edges of a two-dimen-
sional material and we have applied them to the gapped
graphene model: these formulas show that the connection
between bulk currents and measurable edge accumulations
is much more complex than previously suspected. This, in
particular, leads us to surmise that any physical system in
which evidence of the VHE has been found either by Kerr
rotation microscopy [29] or by nonlocal resistance mea-
surements [1,15–18] cannot be a true insulator but must
have partially populated bulk or edge states.
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